Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Adv Sci (Weinh) ; : e2310264, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689507

ABSTRACT

Operando decoding of the key parameters of photo-electric catalysis provides reliable information for catalytic effect evaluation and catalytic mechanism exploration. However, to capture the details of surface-localized and rapid chemical and thermal events at the nanoscale in real-time is highly challenging. A promising approach based on a lab-around-microfiber sensor capable of simulating photo-electric catalytic reactions on the surface of optical fibers as well as monitoring reactant concentration changes and catalytic heat generation processes is demonstrated. Due to the penetration depth of submicron size and the fast response ability of the evanescent field, the lab-around-microfiber sensor overcame the difficulty of reading instantaneous surface parameters in the submicron range. This sensor operando dismantled the changes in reactant concentration and temperature on the catalyst surface induced by light and voltage, respectively. It also decoded the impact of catalyst composition on the adsorption efficiency and catalytic efficiency across various wavelengths and determined the synchronized occurrence of pollutant degradation and catalytic thermal effects. Stable correlations between the real-time parameters and catalytic activities are obtained, helping to provide a basic understanding of the catalytic process and mechanism. This approach fills an important gap in the current monitoring methods of catalytic processes and heat production.

2.
BMJ Open ; 14(5): e082484, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760047

ABSTRACT

PURPOSE: The administration of immune checkpoint inhibitors (ICIs) may lead to renal adverse events, notably including renal dysfunction. To early predict the probability of renal dysfunction after ICIs therapy, a retrospective case-control study was conducted. METHODS: Clinical information on ICIs-treated patients was collected. Multivariable logistic regression was applied to identify risk factors for renal dysfunction after ICIs treatment. Moreover, a nomogram model was developed and validated internally. RESULTS: A total of 442 patients were included, among which 35 (7.9%) experienced renal dysfunction after ICIs treatment. Lower baseline estimated glomerular filtration rate (eGFR) (OR 0.941; 95% CI 0.917 to 0.966; p<0.001), concurrent exposure of platinum(OR 4.014; 95% CI 1.557 to 10.346; p=0.004), comorbidities of hypertension (OR 3.478; 95% CI 1.600 to 7.562; p=0.002) and infection (OR 5.402; 95% CI 1.544 to 18.904; p=0.008) were found to be independent associated with renal dysfunction after ICIs treatment. To develop a predictive nomogram for the occurrence of renal dysfunction after ICIs treatment, the included cases were divided into training and validation groups in a ratio of 7:3 randomly. The above four independent risk factors were included in the model. The area under the receiver operating characteristic curves of the predictiive model were 0.822 (0.723-0.922) and 0.815 (0.699-0.930) in the training and validation groups, respectively. CONCLUSIONS: Lower baseline eGFR, platinum exposure, comorbidities of hypertension and infection were predictors of renal dysfunction in ICIs-treated patients with cancer. A nomogram was developed to predict the probability of renal dysfunction after ICIs treatment, which might be operable and valuable in clinical practice.


Subject(s)
Glomerular Filtration Rate , Immune Checkpoint Inhibitors , Nomograms , Humans , Male , Female , Retrospective Studies , Immune Checkpoint Inhibitors/adverse effects , Middle Aged , Case-Control Studies , Aged , Risk Factors , Logistic Models , Neoplasms/drug therapy , Renal Insufficiency/chemically induced , Renal Insufficiency/epidemiology , Kidney Diseases/chemically induced , Kidney Diseases/epidemiology
3.
Acta Biomater ; 180: 394-406, 2024 May.
Article in English | MEDLINE | ID: mdl-38615810

ABSTRACT

The construction and optimization of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy (PDT), and photothermal therapy (PTT) functions remain challenging. In this study, we aimed to design and synthesize four donor-acceptor (D-A) type aggregation-induced emission molecules: PSI, TPSI, PSSI, and TPSSI. We employed phenothiazine as an electron donor and 1,3-bis(dicyanomethylidene)indan as a strong electron acceptor in the synthesis process. Among them, TPSSI exhibited efficient type I reactive oxygen species generation, high photothermal conversion efficiency (45.44 %), and near-infrared emission. These observations can be attributed to the introduction of a triphenylamine electron donor group and a thiophene unit, which resulted in increased D-A strengths, a reduced singlet-triplet energy gap, and increased free intramolecular motion. TPSSI was loaded into bovine serum albumin to prepare biocompatible TPSSI nanoparticles (NPs). Our results have indicated that TPSSI NPs can target lipid droplets with negligible dark toxicity and can efficiently generate O2•- in hypoxic tumor environments. Moreover, TPSSI NPs selectively targeted 4T1 tumor tissues and exhibited a good PDT-PTT synergistic effect in vitro and in vivo. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technologies. STATEMENT OF SIGNIFICANCE: The construction of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy, and photothermal therapy functions, and its optimization remain challenging. In this study, we construct four donor-acceptor aggregation-induced emission molecules using phenothiazine as an electron donor and 1,3-Bis(dicyanomethylidene)indan as a strong electron acceptor. By optimizing the molecular structure, an integrated phototherapy agent with fluorescence imaging ability and high photodynamic / photothermal therapy performance was prepared. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technology.


Subject(s)
Photochemotherapy , Photothermal Therapy , Animals , Photochemotherapy/methods , Mice , Female , Mice, Inbred BALB C , Cell Line, Tumor , Infrared Rays , Nanoparticles/chemistry , Nanoparticles/therapeutic use
4.
Plant Physiol Biochem ; 210: 108571, 2024 May.
Article in English | MEDLINE | ID: mdl-38604011

ABSTRACT

2-(2-Phenylethyl) chromone (PEC) and its derivatives are markers of agarwood formation and are also related to agarwood quality. However, the biosynthetic and regulatory mechanisms of PECs still remain mysterious. Several studies suggested that type III polyketide synthases (PKSs) contribute to PEC biosynthesis in Aquilaria sinensis. Furthermore, systematic studies on the evolution of PKSs in A. sinensis have rarely been reported. Herein, we comprehensively analyzed PKS genes from 12 plant genomes and characterized the AsPKSs in detail. A unique branch contained only AsPKS members was identified through evolutionary analysis, including AsPKS01 that was previously indicated to participate in PEC biosynthesis. AsPKS07 and AsPKS08, two tandem-duplicated genes of AsPKS01 and lacking orthologous genes in evolutionary models, were selected for their transient expression in the leaves of Nicotiana benthamiana. Subsequently, PECs were detected in the extracts of N. benthamiana leaves, suggesting that AsPKS07 and AsPKS08 promote PEC biosynthesis. The interaction between the promoters of AsPKS07, AsPKS08 and five basic leucine zippers (bZIPs) from the S subfamily indicated that their transcripts could be regulated by these transcription factors (TFs) and might further contribute to PECs biosynthesis in A. sinensis. Our findings provide valuable insights into the molecular evolution of the PKS gene family in A. sinensis and serve as a foundation for advancing PEC production through the bioengineering of gene clusters. Ultimately, this contribution is expected to shed light on the mechanism underlying agarwood formation.


Subject(s)
Evolution, Molecular , Thymelaeaceae , Thymelaeaceae/genetics , Thymelaeaceae/enzymology , Phylogeny , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Nicotiana/genetics , Nicotiana/enzymology , Nicotiana/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism
5.
Adv Mater ; 36(21): e2312985, 2024 May.
Article in English | MEDLINE | ID: mdl-38373270

ABSTRACT

Invasive fungal infections pose a significant public health threat. The lack of precise and timely diagnosis is a primary factor contributing to the significant increase in patient mortality rates. Here, an interface-modulated biosensor utilizing an optical fiber for quantitative analysis of fungal biomarkers at the early stage of point-of-care testing (POCT), is reported. By integrating surface refractive index (RI) modulation and plasmon enhancement, the sensor to achieve high sensitivity in a directional response to the target analytes, is successfully optimized. As a result, a compact fiber-optic sensor with rapid response time, cost-effectiveness, exceptional sensitivity, stability, and specificity, is developed. This sensor can successfully identify the biomarkers of specific pathogens from blood or other tissue specimens in animal models. It quantifies clinical blood samples with precision and effectively discriminates between negative and positive cases, thereby providing timely alerts to potential patients. It significantly reduces the detection time of fungal infection to only 30 min. Additionally, this approach exhibits remarkable stability and achieves a limit of detection (LOD) three orders of magnitude lower than existing methods. It overcomes the limitations of existing detection methods, including a high rate of misdiagnosis, prolonged detection time, elevated costs, and the requirement for stringent laboratory conditions.


Subject(s)
Biomarkers , Biosensing Techniques , Optical Fibers , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Biomarkers/analysis , Biomarkers/blood , Humans , Animals , Fungi , Limit of Detection , Fiber Optic Technology , Mycoses/diagnosis , Point-of-Care Testing , Mice
6.
Cureus ; 16(1): e51936, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38333440

ABSTRACT

PURPOSE: Idiopathic membranous nephropathy (IMN) with moderate risk or above was recommended to receive immunosuppressive therapy. We attempted to evaluate the optimal dose of glucocorticoid when combined with evidence-proven effective immunosuppressants by network meta-analysis. METHODS: A systematic review of the literature was conducted in PubMed, Embase, Cochrane Library, and ClinicalTrials.gov from inception until January 2022. Randomized controlled trials (RCTs) in IMN limited to supportive care, glucocorticoids, cyclophosphamide, chlorambucil, calcineurin inhibitors (CNIs), and rituximab were screened. RESULTS: Twenty-eight RCTs of 1,830 patients were included. Therapeutic regimens were divided as follows: moderate- to high-dose glucocorticoids plus CNIs (HMSCn), moderate- to high-dose glucocorticoids plus cyclophosphamide (HMSCt), moderate- to high-dose glucocorticoids plus chlorambucil (HMSCh), zero- to low-dose glucocorticoids plus CNIs (LNSCn), zero- to low-dose glucocorticoids plus cyclophosphamide (LNSCt), rituximab alone (R), glucocorticoids alone (SE), and supportive care alone (SP). Compared with SP, HMSCh (risk ratio [RR]: 1.77, 95% confidence interval [CI]: 1, 3.18), HMSCn (RR: 2.5, 95%CI: 1.25, 5.11), HMSCt (RR: 2.15, 95%CI: 1.29, 3.64), LNSCn (RR: 2.16, 95%CI: 1.25, 3.95), and R (RR: 2.07, 95%CI: 1, 4.39) had a higher probability of total remission rate, while HMSCn represented the highest probability depending on the surface under the cumulative ranking area (SUCRA) ranking values. Regarding infection, no significant difference was found between different doses of glucocorticoids plus the same immunosuppressant. HMSCn and HMSCt showed superiority in reducing 24-hour urine total protein compared with HMSCh, LNSCn, SE, and SP, while HMSCn seemed to be the most effective regimen through the ranking of SUCRA value. CONCLUSION: Moderate- to high-dose glucocorticoids showed superiority in proteinuria remission when combined with CNIs in IMN, with no increasing risk of infection.

7.
Adv Mater ; 36(8): e2310571, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029784

ABSTRACT

The use of light as a powerful tool for disease treatment has introduced a new era in tumor treatment and provided abundant opportunities for light-based tumor theranostics. This work reports a photothermal theranostic fiber integrating cancer detection and therapeutic functions. Its self-heating effect can be tuned at ultralow powers and used for self-heating detection and tumor ablation. The fiber, consisting of a dual-plasmonic nanointerface and an optical microfiber, can be used to distinguish cancer cells from normal cells, quantify cancer cells, perform hyperthermal ablation of cancer cells, and evaluate the ablation efficacy. Its cancer cell ablation rate reaches 89% in a single treatment. In vitro and in vivo studies reveal quick, deep-tissue photonic hyperthermia in the NIR-II window, which can markedly ablate tumors. The marriage of a dual-plasmonic nanointerface and an optical microfiber presents a novel paradigm in photothermal therapy, offering the potential to surmount the challenges posed by limited light penetration depth, nonspecific accumulation in normal tissues, and inadvertent damage in current methods. This work thus provides insight for the exploration of an integrated theranostic platform with simultaneous functions in cancer diagnostics, therapeutics, and postoperative monitoring for future practical applications.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Precision Medicine , Neoplasms/therapy , Neoplasms/drug therapy , Phototherapy/methods , Theranostic Nanomedicine/methods , Hyperthermia, Induced/methods , Cell Line, Tumor , Nanoparticles/therapeutic use
8.
Eur J Med Chem ; 258: 115612, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37441851

ABSTRACT

The chemotherapeutic drug of doxorubicin (DOX) has witnessed widespread applications for treating various cancers. DOX-treated dying cells bear cellular modifications which allow enhanced presentation of tumor antigen and neighboring dendritic cell activation. Furthermore, DOX also facilitate the immune-mediated clearance of tumor cells. However, disadvantages such as severe off-target toxicity, and prominent hydrophobicity have resulted in unsatisfactory clinical therapeutic outcomes. The effective delivery of DOX drug molecules is still challenging despite the rapid advances in nanotechnology and biomaterials. Huge progress has been witnessed in DOX nanoprodrugs owing to their brilliant benefits such as tumor stimuli-responsive drug release capacity, high drug loading efficiency and so on. This review summarized recent progresses of DOX prodrug-based nanomedicines to provide deep insights into future development and inspire researchers to explore DOX nanoprodrugs with real clinical applications.


Subject(s)
Nanoparticles , Neoplasms , Prodrugs , Humans , Prodrugs/pharmacology , Prodrugs/therapeutic use , Drug Delivery Systems/methods , Nanomedicine , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Cell Line, Tumor
9.
Pharmacol Res ; 194: 106854, 2023 08.
Article in English | MEDLINE | ID: mdl-37460003

ABSTRACT

Mixed hyperlipidemia, characterized by high levels of triglycerides and cholesterol, is a key risk factor leading to atherosclerosis and other cardiovascular diseases. Existing clinical drugs usually only work on a single indicator, decreasing either triglyceride or cholesterol levels. Developing dual-acting agents that reduce both triglycerides and cholesterol remains a great challenge. Pancreatic triglyceride lipase (PTL) and Niemann-Pick C1-like 1 (NPC1L1) have been identified as crucial proteins in the transport of triglycerides and cholesterol. Here, cinaciguat, a known agent used in the treatment of acute decompensated heart failure, was identified as a potent dual inhibitor targeting PTL and NPC1L1. We presented in vitro evidence from surface plasmon resonance analysis that cinaciguat interacted with PTL and NPC1L1. Furthermore, cinaciguat exhibited potent PTL-inhibition activity. Fluorescence-labeled cholesterol uptake analysis and confocal imaging showed that cinaciguat effectively inhibited cholesterol uptake. In vivo evaluation showed that cinaciguat significantly reduced the plasma levels of triglycerides and cholesterol, and effectively alleviated high-fat diet-induced intestinal microbiota dysbiosis and metabolic disorders. These results collectively suggest that cinaciguat has the potential to be further developed for the therapy of mixed hyperlipidemia.


Subject(s)
Gastrointestinal Microbiome , Hyperlipidemias , Lipidoses , Humans , Membrane Transport Proteins/metabolism , Hyperlipidemias/drug therapy , Dysbiosis/drug therapy , Cholesterol/metabolism , Triglycerides , Lipase , Ezetimibe
10.
iScience ; 26(6): 106933, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378342

ABSTRACT

The global prevalence and burden of musculoskeletal (MSK) disorders are immense. Advancements in next-generation sequencing (NGS) have generated vast amounts of data, accelerating the research of pathological mechanisms and the development of therapeutic approaches for MSK disorders. However, scattered datasets across various repositories complicate uniform analysis and comparison. Here, we introduce MSdb, a database for visualization and integrated analysis of next-generation sequencing data from human musculoskeletal system, along with manually curated patient phenotype data. MSdb provides various types of analysis, including sample-level browsing of metadata information, gene/miRNA expression, and single-cell RNA-seq dataset. In addition, MSdb also allows integrated analysis for cross-samples and cross-omics analysis, including customized differentially expressed gene/microRNA analysis, microRNA-gene network, scRNA-seq cross-sample/disease integration, and gene regulatory network analysis. Overall, systematic categorizing, standardized processing, and freely accessible knowledge features MSdb a valuable resource for MSK research community.

11.
Adv Mater ; 35(33): e2304116, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37342974

ABSTRACT

Optical fibers can be effective biosensors when employed in early-stage diagnostic point-of-care devices as they can avoid interference from molecules with similar redox potentials. Nevertheless, their sensitivity needs to be improved for real-world applications, especially for small-molecule detection. This work demonstrates an optical microfiber biosensor for dopamine (DA) detection based on the DA-binding-induced aptamer conformational transitions that occur at plasmonic coupling sites on a double-amplified nanointerface. The sensor exhibits ultrahigh sensitivity when detecting DA molecules at the single-molecule level; additionally, this work provides an approach for overcoming optical device sensitivity limits, further extending optical fiber single-molecule detection to a small molecule range (e.g., DA and metal ions). The selective energy enhancement and signal amplification at the binding sites effectively avoid nonspecific amplification of the whole fiber surface which may lead to false-positive results. The sensor can detect single-molecule DA signals in body-fluids. It can detect the released extracellular DA levels and monitor the DA oxidation process. An appropriate aptamer replacement allows the sensor to be used for the detection of other target small molecules and ions at the single-molecule level. This technology offers alternative opportunities for developing noninvasive early-stage diagnostic point-of-care devices and flexible single-molecule detection techniques in theoretical research.


Subject(s)
Biosensing Techniques , Dopamine , Biosensing Techniques/methods , Optical Fibers , Metals , Ions
12.
Bioorg Chem ; 137: 106576, 2023 08.
Article in English | MEDLINE | ID: mdl-37182421

ABSTRACT

Cancer is one of the leading causes of death worldwide. Although great progress has been achieved in cancer diagnosis and treatment, novel therapies are still urgently needed to increase the efficacy and reduce the side effects of conventional therapies. Personalized medicine involves administering patients drugs that are specific to the characteristics of their tumors, and has significantly reduced side effects and increased overall survival rates. Multifunctional theranostic drugs are designed to combine diagnostic and therapeutic functions into a single molecule, which reduces the number of drugs administered to patients and increases patient compliance, and have shown great potential in propelling personalized medicine. This review focuses on multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy, with a particular emphasis placed on highlighting design strategies and application in vitro or in vivo. The challenges and future perspectives of multifunctional small molecules are also discussed.


Subject(s)
Neoplasms , Precision Medicine , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
13.
BMC Nephrol ; 24(1): 107, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087434

ABSTRACT

BACKGROUND: Several risk factors of immune checkpoint inhibitors (ICIs)-associated acute kidney injury (AKI) have been reported sporadically. To identify the risk factors of ICIs-associated AKI in a large-scale population, therefore we conducted a systematic review and a real-world retrospective study. METHODS: We search literature concerning risk factors of ICIs-associated AKI in ClinicalTrials.gov and electronic databases (PubMed, Cochrane Library, Embase) up to January 2022. Meta-analysis was performed by using odds ratios (ORs) with 95%CIs. In a separate retrospective pharmacovigilance study by extracting data from US FDA Adverse Event Reporting System (FAERS) database, disproportionality was analyzed using the reporting odds ratio (ROR). RESULTS: A total of 9 studies (5927 patients) were included in the meta-analysis. The following factors were associated with increased risk of ICIs-associated AKI, including proton pump inhibitors(PPIs) (OR = 2.07, 95%CI 1.78-2.42), angiotensin-converting enzyme inhibitors (ACEIs)/ angiotensin receptor blockers (ARBs) (OR = 1.56, 95%CI 1.24-1.95), nonsteroidal anti-inflammatory drugs (NSAIDs) (OR = 1.29, 95%CI 1.01-1.65), diuretics (OR = 2.00, 95%CI 1.38-2.89), diabetes mellitus (OR = 1.28, 95%CI 1.04-1.57), genitourinary cancer (OR = 1.46, 95%CI 1.15-1.85), combination therapy of ICIs (OR = 1.93, 95%CI 1.25-2.97) and extrarenal immune-related adverse events(irAEs) (OR = 2.51, 95%CI 1.96-3.20). Furthermore, analysis from FAERS database verified that concurrent exposures of PPIs (ROR = 2.10, 95%CI 1.91-2.31), ACEIs/ARBs (ROR = 3.25, 95%CI 2.95-3.57), NSAIDs (ROR = 3.06, 95%CI 2.81-3.32) or diuretics (ROR = 2.82, 95%CI 2.50-3.19) were observed significant signals associated with AKI in ICIs-treated patients. CONCLUSIONS: Concurrent exposures of PPIs, ACEIs/ARBs, NSAIDs or diuretics, diabetes mellitus, genitourinary cancer, combination therapy, and extrarenal irAEs seem to increase the risk of AKI in ICIs-treated patients.


Subject(s)
Acute Kidney Injury , Immune Checkpoint Inhibitors , Humans , Retrospective Studies , Immune Checkpoint Inhibitors/adverse effects , Pharmacovigilance , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin Receptor Antagonists/pharmacology , Risk Factors , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Diuretics , Anti-Inflammatory Agents, Non-Steroidal/adverse effects
14.
Bioorg Chem ; 136: 106554, 2023 07.
Article in English | MEDLINE | ID: mdl-37094481

ABSTRACT

Small molecule theranostic agents for tumor treatment exhibited triadic properties in tumor targeting, imaging, and therapy, which have attracted increasing attention as a potential complement for, or improved to, classical small molecule antitumor drugs. Photosensitizer have dual functions of imaging and phototherapy, and have been widely used in the construction of small molecule theranostic agents over the last decade. In this review, we summarized representative agents that have been studied in the field of small molecule theranostic agents based on photosensitizer in the last decade, and highlighted their characteristics and application in tumor-targeted monitoring and phototherapy. The challenges and future perspectives of photosensitizers in building small molecule theranostic agents for diagnosis and therapy of tumors were also discussed.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Precision Medicine , Phototherapy , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
15.
Int Immunopharmacol ; 113(Pt A): 109350, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36272360

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a rare but severe adverse event of immune checkpoint inhibitors (ICIs). With the increasing reports of ICIs, it's necessary to put new insights into ICIs-related AKI. We conducted a systematic review of randomized controlled trials(RCTs) and a real-world study by extracting data from the US FDA Adverse Event Reporting System (FAERS) database. METHODS: We explored ICIs-related AKI events in RCTs available in ClinicalTrials.gov and electronic databases (PubMed, Cochrane Library, Embase) up to August 2021. Meta-analysis was performed by using risk ratios (RRs) with 95 %CIs. In a separate retrospective pharmacovigilance study of FAERs, disproportionality was analyzed using the proportional reports reporting odds ratio (ROR) and information components (IC). RESULTS: A total of 79 RCTs (500,09 patients) were included, and ICIs were associated with increased risk of all-grade (RR = 1.37, 95 %CI:1.14-1.65) and high-grade AKI (RR = 1.60, 95 %CI:1.16-2.20). Results of subgroup analysis indicated that RR of ICI-related AKI did not vary significantly by cancer type, treatment regimen (monotherapy or combination of ICIs), study design (double-blind or open-label), individual ICIs and publication status (published or unpublished). FAERS pharmacovigilance data identified 1918 cases of AKI related to ICIs therapy. ICIs were significantly associated with over-reporting frequencies of AKI (ROR = 2.38, 95 %CI:2.27-2.49; IC = 1.22, 95 %CI:1.16-1.27). The median onset time of AKI was 48 days, 77.5 % of patients discontinued the use of ICIs, and 15.9 % of patients resulted in death. CONCLUSIONS: These data suggest that ICIs were significantly associated with increased risk of AKI in both trial settings and clinical practice.


Subject(s)
Acute Kidney Injury , Drug-Related Side Effects and Adverse Reactions , Humans , Pharmacovigilance , Immune Checkpoint Inhibitors/adverse effects , Retrospective Studies , Drug-Related Side Effects and Adverse Reactions/epidemiology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Randomized Controlled Trials as Topic
16.
Front Psychol ; 13: 968820, 2022.
Article in English | MEDLINE | ID: mdl-36118460

ABSTRACT

Tourism in the Globally Important Agricultural Heritage System (GIAHS) is critical to the inheritance and innovation of excellent traditional farming cultures. Based on social identity theory, this paper explored the process by which agricultural heritage systems' creative performance influences tourists' cultural identity through 406 questionnaires from Chinese tourists. The results indicate that creative performance affects tourists' cultural identity through a dual perspective of knowledge transfer and novelty perception. Furthermore, perceived authenticity acts as a moderator, weakening the impact of creative performance on tourists' knowledge transfer, while perceived authenticity does not affect the process of tourists' novelty perception. This research provides a fresh perspective on the sustainable development of agricultural heritage tourism. Meanwhile, it offers theoretical foundations and practical inspirations for the development of agricultural heritage's creative tourism.

17.
J Nat Prod ; 85(5): 1193-1200, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35512012

ABSTRACT

Eight new phenethoxy derivatives, trichoasperellins A-H (1-8), were isolated from the endophytic fungus Trichoderma asperellum G10 isolated from the medicinal plant Areca catechu L. The structures of these compounds were elucidated from spectroscopic data, J-based configurational analysis, and Mosher's methods. Compounds 1-4 and 6-8 bear one or two multioxidized C7 moieties with the same carbon skeleton. The carbon skeletons of compounds 6-8 are new, all containing three moieties connected via two acetal carbons similar to those of disaccharide glycosides. Compound 4 inhibited nitric oxide production with an IC50 value of 48.3 µM, comparable to that of the positive control indomethacin (IC50, 42.3 µM).


Subject(s)
Hypocreales , Trichoderma , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Areca , Carbon , Molecular Structure , Trichoderma/chemistry
18.
Anal Chem ; 94(22): 8058-8065, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35611971

ABSTRACT

The detection and therapy of cancers in the early stage significantly alleviate the associated dangers. Optical devices offer new opportunities for these early measures. However, the clinical translation of the existing methods is severely hindered by their relatively low sensitivity or unclear physiological metabolism. Here, an optical microfiber sensor with a drug loading gold nanorod-black phosphorous nanointerface, as an ultrasensitive biosensor and nanotherapy platform, is developed to meet the early-stage requirement. With interface sensitization and functionalization of the hybrid nanointerface, the microfiber sensor presents an ultrahigh sensing performance, achieving the selective detection of the HER2 biomarker with limits of detection of 0.66 aM in buffer solution and 0.77 aM in 10% serum. It can also distinguish breast cancer cells from other cells in the early stage. Additionally, enabled by the interface, the optical microfiber is able to realize cellular nanotherapy, including photothermal/chemotherapy with pump laser coupling after diagnosis, and evaluate therapy results in real time. The immobilization of the interface on the optical microfiber surface prevents the damage to normal cells induced by nanomaterial enrichment, making the device more efficient and intelligent. This study opens up a new avenue for the development of smart optical platforms for sensitive biosensing and precision therapy.


Subject(s)
Biosensing Techniques , Nanotubes , Optical Devices , Gold , Phosphorus
19.
Chem Eng J ; 407: 127143, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33013189

ABSTRACT

Portable devices, which can detect and characterize the individual nanoparticles in real time, are of insignificant interest for early diagnosis, homeland security, semiconductor manufacturing and environmental monitoring. Optical microfibers present a good potential in this field, however, are restricted by the sensitivity limit. This study reports the development of a 3D plasmonic nanointerface, which is made of a Cu-BTC framework supporting Cu3-xP nanocrystals, enhancing the optical microfiber for real-time detection and sizing of single nanoparticles. The Cu3-xP nanocrystals are successfully embedded in the 3D Cu-BTC framework. The localized-surface plasmon resonance is tuned to coincide with the evanescent field of the optical microfiber. The 3D Cu-BTC framework, as the scaffold of nanocrystals, confines the local resonance field on the microfiber with three dimensions, at which the binding of target nanoparticles occurs. Based on the evanescent field confinement and surface enhancement by the nanointerface, the optical microfiber sensor overcomes its sensitivity limit, and enables the detection and sizing of the individual nanoparticles. The compact size and low optical power supply of the sensor confirm its suitability as a portable device for the real-time single-nanoparticle characterization, especially for the convenient evaluation of the ultrafine particles in the environment. This work opens up an approach to overcome the sensitivity limit of the optical microfibers, as long with stimulating the portable real-time single-nanoparticle detection and sizing.

20.
Org Lett ; 22(23): 9325-9330, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33226829

ABSTRACT

An efficient protocol for synthesizing reverse glycosyl fluorides is described, relying on silver-promoted decarboxylative fluorination of structurally diverse pentofuran- and hexopyranuronic acids under the mild reaction conditions. The potential applications of the reaction are further demonstrated by converting readily available d-uronic acid derivatives into uncommon d-/l-glycosyl fluorides through a C1-to-C5 switch strategy. The reaction mechanism is corroborated by 5-exo-trig radical cyclization of allyl α-d-C-glucopyranuronic acid triggered by decarboxylative fluorination.

SELECTION OF CITATIONS
SEARCH DETAIL
...