Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Zhongguo Zhen Jiu ; 43(6): 669-78, 2023 Jun 12.
Article in Chinese | MEDLINE | ID: mdl-37313561

ABSTRACT

OBJECTIVE: To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI. METHODS: A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 µL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR. RESULTS: Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). CONCLUSION: EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.


Subject(s)
Electroacupuncture , Myocardial Reperfusion Injury , Male , Animals , Rats , Rats, Sprague-Dawley , Cerebellar Nuclei , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/therapy , Receptors, GABA-A/genetics , RNA, Messenger
2.
Cancer Sci ; 114(4): 1596-1605, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36541519

ABSTRACT

To achieve a better treatment regimen and follow-up assessment design for intensity-modulated radiotherapy (IMRT)-treated nasopharyngeal carcinoma (NPC) patients, an accurate progression-free survival (PFS) time prediction algorithm is needed. We propose developing a PFS prediction model of NPC patients after IMRT treatment using a deep learning method and comparing that with the traditional texture analysis method. One hundred and fifty-one NPC patients were included in this retrospective study. T1-weighted, proton density and dynamic contrast-enhanced magnetic resonance (MR) images were acquired. The expression level of five genes (HIF-1α, EGFR, PTEN, Ki-67, and VEGF) and infection of Epstein-Barr (EB) virus were tested. A residual network was trained to predict PFS from MR images. The output as well as patient characteristics were combined using a linear regression model to provide a final PFS prediction. The prediction accuracy was compared with that of the traditional texture analysis method. A regression model combining the deep learning output with HIF-1α expression and Epstein-Barr infection provides the best PFS prediction accuracy (Spearman correlation R2  = 0.53; Harrell's C-index = 0.82; receiver operative curve [ROC] analysis area under the curve [AUC] = 0.88; log-rank test hazard ratio [HR] = 8.45), higher than a regression model combining texture analysis with HIF-1α expression (Spearman correlation R2  = 0.14; Harrell's C-index =0.68; ROC analysis AUC = 0.76; log-rank test HR = 2.85). The deep learning method does not require a manually drawn tumor region of interest. MR image processing using deep learning combined with patient characteristics can provide accurate PFS prediction for nasopharyngeal carcinoma patients and does not rely on specific kernels or tumor regions of interest, which is needed for the texture analysis method.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/radiotherapy , Retrospective Studies , Survival Rate , Prognosis , Magnetic Resonance Imaging/methods , Herpesvirus 4, Human/genetics , Neural Networks, Computer , Gene Expression
3.
J Neurophysiol ; 129(2): 320-332, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36541603

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) has high morbidity and mortality worldwide. Increasing evidence has shown that electroacupuncture (EA) plays a critical role in alleviating MIRI. The aim of this study is to investigate whether glutamatergic neurons in the lateral hypothalamus (LH) have vital effect on MIRI as well as the underlying mechanism during the EA pretreatment. The MIRI model was established by ligating the left anterior descending (LAD) coronary artery for 30 min followed by reperfusion for 2 h. Chemogenetics, electrocardiogram (ECG) recording, ELISA, multichannel physiology recording, and immunofluorescence staining methods were combined to demonstrate that firing frequencies of neurons in the LH and expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the percentage of infarct size and the levels of cardiac troponin I (cTnI) and creatine kinase isoenzymes (CK-MB) were similar to inhibition of glutamatergic neurons in LH, also attenuated morphology of myocardial tissue was induced by MIRI. However, activation of glutamatergic neurons in LH weakened the above effects of EA pretreatment.NEW & NOTEWORTHY This study demonstrates that EA preconditioning can attenuate myocardial injury for MIRI, which is similar to inhibition of glutamatergic neurons in LH. However, chemical activation of glutamatergic neurons in LH attenuates the protective effect of EA pretreatment. These findings help better understand the mechanisms of EA to regulate cardiac function.


Subject(s)
Electroacupuncture , Myocardial Reperfusion Injury , Humans , Hypothalamic Area, Lateral , Myocardium , Electrocardiography
5.
Eur Radiol ; 31(8): 5669-5679, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33547478

ABSTRACT

OBJECTIVES: To estimate the microvascular permeability and perfusion of skeletal muscle by using quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and explore the feasibility of using texture analysis (TA) to evaluate subtle structural changes of diabetic muscles. METHODS: Twenty-four rabbits were randomly divided into diabetic (n = 14) and control (n = 10) groups, and underwent axial DCE-MRI of the multifidus muscle (0, 4, 8, 12, and 16 weeks after alloxan injection). The pharmacokinetic model was used to calculate the permeability parameters; texture parameters were extracted from volume transfer constant (Ktrans) map. The two-sample t test/Mann-Whitney U test, repeated measures analysis of variance/Friedman test, and Pearson correlations were used for data analysis. RESULTS: In the diabetic group, Ktrans and rate constant (Kep) increased significantly at week 8 and then showed a decreasing trend. Extravascular extracellular space volume fraction (Ve) increased and plasma volume fraction (Vp) decreased significantly from the 8th week. Skewness began to decrease at the 4th week. Median Ktrans and entropy increased significantly, while inverse difference moment decreased from the 8th week. Energy decreased while contrast increased only at week 8. Muscle fibre cross-sectional area was negatively correlated with Ve. The capillary-to-fibre ratio was positively correlated with Vp (p < 0.05, all). CONCLUSIONS: Quantitative DCE-MRI can be used to evaluate microvascular permeability and perfusion in diabetic skeletal muscle at an early stage; TA based on Ktrans map can identify microarchitectural modifications in diabetic muscles. KEY POINTS: • Four quantitative parameters of DCE-MRI can be used to evaluate microvascular permeability and perfusion of skeletal muscle in diabetic models at early stages. • Texture analysis based on Ktrans map can identify subtle structural changes in diabetic muscles.


Subject(s)
Contrast Media , Diabetes Mellitus , Alloxan , Animals , Capillary Permeability , Magnetic Resonance Imaging , Muscle, Skeletal/diagnostic imaging , Rabbits
6.
J Acupunct Meridian Stud ; 14(6): 207-218, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35770600

ABSTRACT

Background: Myocardial ischemia reperfusion injury (MIRI) is an important mechanism of post-myocardial infarction injury and a main cause of death in patients with ischemic heart disease. Electroacupuncture (EA) pretreatment is effective for the prevention and treatment of MIRI, but mechanisms mediating the effects of cardiovascular disease EA treatments remain unclear. Objectives: To determine whether the lateral hypothalamus (LHA) and the cerebellar fastigial nucleus (FN) are involved in the protective effects of EA stimulation on MIRI. Methods: EA pretreatment was performed for 7 days before the establishment of the MIRI model. ST-segment changes on electrocardiograms were recorded and the Curtis-Walker arrhythmia score was used to evaluate changes in reperfusion injury. Hematoxylin-eosin staining was applied to evaluate the pathological and morphological changes in myocardial tissue. c-fos expression in the LHA and FN was determined by immunofluorescence staining. Glutamic (Glu) and γ-Aminobutyric acid (GABA) levels were measured using a high-performance liquid chromatography-electrochemical method. Results: EA pretreatment reduced ST-segment elevation, arrhythmia scores, and morphological changes in MIRI myocardial cells in rats, and decreased the c-fos protein expression in LHA/FN nuclei. MIRI was associated with an imbalance between GABA and Glu levels, whereas EA pretreatment increased GABA levels and decreased Glu levels in the LHA/FN. Conclusion: FN and LHA are involved in the EA-mediated attenuation of MIRI. Pretreatment with EA plays a protective role in the myocardium by regulating Glu and GABA release in the LHA and FN.


Subject(s)
Electroacupuncture , Myocardial Reperfusion Injury , Animals , Cerebellar Nuclei , Hypothalamic Area, Lateral , Myocardial Reperfusion Injury/therapy , Rats , gamma-Aminobutyric Acid
7.
Front Endocrinol (Lausanne) ; 12: 785604, 2021.
Article in English | MEDLINE | ID: mdl-35002967

ABSTRACT

Purpose: To investigate whether the microvascular permeability of lumbar marrow and bone trabecular changes in early-stage diabetic rabbits can be quantitatively evaluated using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), quantitative computed tomography, and texture-analyzed permeability parameter Ktrans map of DCE-MRI. Materials and Methods: This prospective study included 24 rabbits that were randomly assigned to diabetic (n = 14) and control (n = 10) groups. All rabbits underwent sagittal MRI of the lumbar region at 0, 4, 8, 12, and 16 weeks after alloxan injection. Pearson correlation coefficient was performed to determine the correlation between permeability parameter and bone mineral density (BMD). Repeated-measures ANOVA was used to analyze the changes in lumbar BMD over time in each group and the texture parameters of diabetic rabbit lumbar marrow at different time points. Mann-Whitney U rank sum test was used to compare the differences of each index between the two groups and calculate the area under the curve (AUC). Results: BMD was correlated with Ktrans , Kep , and Ve but not with Vp . At weeks 0-16, the BMD of the rabbits in the diabetic and normal groups was not statistically significant, but the change in BMD showed an overall downward trend. For texture analysis, entropy, energy, and Uniformized positive pixel (UPP) parameters extracted from the Ktrans map showed significant differences from week 0 to 16 between the two groups. The identification ability at 8-12 weeks was higher than that at 12-16 weeks, and the AUCs were 0.734, 0.766, and 0.734, respectively (P < 0.05 for all). Conclusions: The changes in BMD measured using quantitative computed tomography occurred later than those measured using bone trabecular morphometry. Texture analysis parameters based on DCE-MRI quantitative parameter Ktrans map are feasible to identify early changes in lumbar marrow structure in diabetic rabbits.


Subject(s)
Alloxan/toxicity , Bone Marrow/diagnostic imaging , Cancellous Bone/diagnostic imaging , Diabetes Mellitus, Experimental/diagnostic imaging , Magnetic Resonance Imaging/standards , Tomography, X-Ray Computed/standards , Animals , Bone Density/drug effects , Bone Density/physiology , Bone Marrow/drug effects , Cancellous Bone/drug effects , Diabetes Mellitus, Experimental/chemically induced , Magnetic Resonance Imaging/methods , Male , Prospective Studies , Rabbits , Tomography, X-Ray Computed/methods
8.
Biotechnol J ; 15(8): e2000004, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32351022

ABSTRACT

Toad bone not only contains the rich cartilage-like matrix but also presents low immunogenicity. It is inferred that decellularized toad bone matrix (dBECM) may provide the more profitable osteoinductive microenvironment for mesenchymal stem cells (MSCs) to promote the repair of bone defects. Herein, a hollow bone-inspired tube is first made from hydroxyapatite (HA) and poly (γ-glutamic acid) (PGA), and then MSCs/dBECM hydrogel is uniformly filled to its central cavity, constructing a biomimetic bone (dBECM + MSCs - PGA + HA). In vitro scratch and transwell experiments show that dBECM hydrogel not only effectively promotes migration and proliferation of MSCs but also induces their osteogenic differentiation. Moreover, the less inflammatory macrophages infiltrate at rat skin after subcutaneously injecting dBECM hydrogel, indicating its low potential for inflammatory attack. After implanting dBECM + MSCs - PGA + HA to critical radius defect of rabbit, X-ray and CT imaging shows that the cortex is effectively regenerated and the medullary cavity recanalization is completed at 20 weeks. Moreover, the expression of Collagen-II and OCN are obviously increased in the defect after implanting dBECM + MSCs - PGA + HA. The therapeutic mechanism of dBECM + MSCs - PGA + HA scaffold are highly associated with the enhanced angiogenesis. Collectively, the biomimetic dBECM + MSCs - PGA + HA scaffold may be a promising strategy to improve radius defect healing efficiency.


Subject(s)
Anura , Bone Matrix , Cartilage , Cellular Microenvironment , Mesenchymal Stem Cells , Radius , Animals , Cartilage/cytology , Cartilage/immunology , Cell Differentiation , Osteogenesis , Rabbits , Radius/growth & development , Radius/injuries , Rats , Tissue Scaffolds
9.
Colloids Surf B Biointerfaces ; 172: 573-585, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30218983

ABSTRACT

Excessive deposition of extracellular matrix (ECM) usually resulted in scar formation during wound healing, which caused skin dysfunction, such as hair loss. Basic fibroblast growth factor (bFGF) was very helpful for promoting hair follicle neogenesis and regulating the remodeling of ECM during wound healing. Because of its poor stability in wound fluids and low permeability against the dense wound scar, the repairing quality of bFGF on wound was hindered largely in clinical practice. To overcome these drawbacks, herein, a novel liposome with silk fibroin hydrogel core (bFGF-SF-LIP) was firstly prepared to stabilize bFGF, followed by insertion of laurocapam, a permeation enhancer, into the liposomal membrane to construct a skin-permeable liposome (SP-bFGF-SF-LIP). The encapsulated efficiency of bFGF was reaching to nearly 90% when ratio of drug/lipids above 1:300, and it activity was not compromised by laurocapam. SP-bFGF-SF-LIP exhibited a hydrodynamic diameter of 103.3 nm and Zeta potential of -2.31 mV. The stability of the encapsulated bFGF in wound fluid was obviously enhanced. After 24 h of incubation with wound fluid containing MMP-9, the remaining bFGF was as high as 65.4 ± 0.5% for SP-bFGF-SF-LIP, while only 2.1 ± 0.2% of free bFGF was remained. The skin-permeability of bFGF was significantly enhanced by SP-bFGF-SF-LIP and most of the encapsulated bFGF penetrated into the dermis. After treatment with SP-bFGF-SF-LIP, the morphology of hair follicle at wound zone was obviously improved and the hair regrew on the deep second scald mice model. The therapeutic mechanism was highly associated with inhibiting scar formation and promoting vascular growth in dermis. Conclusively, SP-bFGF-SF-LIP may a potential option to improve wound healing with high-quality.


Subject(s)
Burns/pathology , Fibroblast Growth Factor 2/pharmacology , Hair Follicle/growth & development , Skin/pathology , Animals , Apoptosis/drug effects , Body Fluids/chemistry , Cell Proliferation/drug effects , Collagen/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Fibroins/chemistry , Fibronectins/metabolism , Hair Follicle/drug effects , Hydrogen Peroxide/toxicity , Laminin/metabolism , Liposomes/ultrastructure , Male , Mice , NIH 3T3 Cells , Neovascularization, Physiologic/drug effects , Particle Size , Permeability , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Skin/blood supply , Skin/drug effects , Static Electricity , Wound Healing/drug effects , Wounds and Injuries/pathology
10.
Oncotarget ; 9(14): 11767-11782, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29589596

ABSTRACT

Nephropathy is one of the most severe complications of diabetic patients. The therapeutic strategies for diabetic patients should not only focus on the control of blood glucose but also pay attention to the occurrence of diabetic nephropathy (DN). Coenzyme Q10 (CoQ10) has great therapeutic potential for DN. However, the clinical application of CoQ10 has been limited because of its low water-solubility and non-specific distribution. Liposomes were supposed to be an effective way for delivering CoQ10 to kidney. CoQ10 was effectively encapsulated into the liposome (CoQ10-LIP) with a high entrapment efficiency of 86.15 %. The CoQ10-LIP exhibited a small hydrodynamic diameter (180 ± 2.1 nm) and negative zeta potential (-18.20 mV). Moreover, CoQ10-LIP was combined with ultrasound-mediated microbubble destruction (UTMD) to enhance specific distribution of CoQ10 in kidney. In early stage of diabetic mellitus (DM), rats were administrated with CoQ10-LIP followed by UTMD (CoQ10-LIP+UTMD) to prevent occurrence of DN. Results revealed that CoQ10-LIP+UTMD effectively prevented the renal morphology and function of diabetics rats from damage. The protective mechanism of CoQ10-LIP was highly associated with protecting podocyte, promoting vascular repair and inhibiting cell apoptosis. Conclusively, CoQ10-LIP in combination with UTMD might be a potential strategy to prevent occurrence of DN.

11.
Int J Nanomedicine ; 13: 681-694, 2018.
Article in English | MEDLINE | ID: mdl-29440894

ABSTRACT

INTRODUCTION: The short lifetime of protein-based therapies has largely limited their therapeutic efficacy in injured nervous post-spinal cord injury (post-SCI). METHODS: In this study, an affinity-based hydrogel delivery system provided sustained-release of proteins, thereby extending the efficacy of such therapies. The affinity-based hydrogel was constructed using a novel polymer, heparin-poloxamer (HP), as a temperature-sensitive bulk matrix and decellular spinal cord extracellular matrix (dscECM) as an affinity depot of drug. By tuning the concentration of HP in formulation, the cold ternary fibroblast growth factor-2 (FGF2)-dscECM-HP solution could rapidly gelatinize into a hydrogel at body temperature. Due to the strong affinity for FGF2, hybrid FGF2-dscECM-HP hydrogel enabled sustained-release of encapsulated FGF2 over an extended period in vitro. RESULTS: Compared to free FGF2, it was observed that both neuron functions and tissue morphology after SCI were clearly recovered in rats treated with FGF2-dscECM-HP hydrogel. Moreover, the expression of neurofilament protein and the density of axons were increased after treatment with hybrid FGF2-dscECM-HP. In addition, the neuroprotective effects of FGF2-dscECM-HP were related to inhibition of chronic endoplasmic reticulum stress-induced apoptosis. CONCLUSION: The results revealed that a hybrid hydrogel system may be a potential carrier to deliver macromolecular proteins to the injured site and enhance the therapeutic effects of proteins.


Subject(s)
Extracellular Matrix/chemistry , Fibroblast Growth Factor 2/pharmacology , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Neuroprotective Agents/pharmacology , Spinal Cord Injuries/drug therapy , Animals , Apoptosis/drug effects , Axons/drug effects , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Female , Fibroblast Growth Factor 2/pharmacokinetics , Heparin/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacokinetics , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , PC12 Cells , Poloxamer/chemistry , Rats , Rats, Sprague-Dawley , Spinal Cord/cytology , Spinal Cord Injuries/pathology , Temperature
12.
Drug Deliv ; 25(1): 364-375, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29366360

ABSTRACT

Silk was easily dyed in traditional textile industry because of its strong affinity to many colorants. Herein, the biocompatible silk fibroin was firstly extracted from Bombyx mori silkworm cocoons. And SF nanoparticles (SFNPs) were prepared for dyeing indocyanine green (ICG) and construct a therapeutic nano-platform (ICG-SFNPs) for photo-thermal therapy of glioblastoma. ICG was easily encapsulated into SFNPs with a very high encapsulation efficiency reaching to 97.7 ± 1.1%. ICG-SFNPs exhibited a spherical morphology with a mean particle size of 209.4 ± 1.4 nm and a negative zeta potential of -31.9 mV, exhibiting a good stability in physiological medium. Moreover, ICG-SFNPs showed a slow release profile of ICG in vitro, and only 24.51 ± 2.27% of the encapsulated ICG was released even at 72 h. Meanwhile, ICG-SFNPs exhibited a more stable photo-thermal effect than free ICG after exposure to near-infrared irradiation. The temperature of ICG-SFNPs rapidly increased by 33.9 °C within 10 min and maintained for a longer time. ICG-SFNPs were also easily internalized with C6 tumor cells in vitro, and a strong red fluorescence of ICG was observed in cytoplasm for cellular imaging. In vivo imaging showed that ICG-SFNPs were effectively accumulated inside tumor site of C6 glioma-bearing Xenograft nude mice through vein injection. Moreover, the temperature of tumor site was rapidly rising up to kill tumor cells after local NIR irradiation. After treatment, its growth was completely suppressed with the relative tumor volume of 0.55 ± 033 while free ICG of 33.72 ± 1.90. Overall, ICG-SFNPs may be an effective therapeutic means for intraoperative phototherapy and imaging.


Subject(s)
Fibroins/chemistry , Glioblastoma/diagnostic imaging , Indocyanine Green/administration & dosage , Indocyanine Green/chemistry , Nanoparticles/chemistry , Silk/chemistry , Animals , Mice , Mice, Inbred BALB C , Mice, Nude , Particle Size , Rats
13.
Mol Med Rep ; 16(6): 9043-9050, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28990095

ABSTRACT

Gastric cancer is a leading cause of cancer­associated mortality worldwide. In studies on the mechanisms of antigastric cancer drugs, autophagy and endoplasmic reticulum (ER) stress have been demonstrated to serve an active role in gastric cancer. The organic extract of Periplaneta americana (also termed American Cockroach), which is named Kangfuxin (KFX) in China, has been used clinically as a traditional Chinese medicine against disorders, including stomach bleeding, gastric ulcers, tuberculosis, burns and trauma. However, the role of KFX and its mechanism in gastric cancer remains to be elucidated. The present study aimed to determine the effects of KFX in vitro against cultured the human carcinoma SGC­7901 cell line, and to explore the potential mechanism of the anticancer effects of KFX in gastric cancer. SGC­7901 cells were treated with different concentrations of KFX for varying amounts of time. As a result, KFX treatment decreased the ratio of apoptosis regulators Bcl­2/Bax, activated ER stress and induced significant apoptosis in SGC­7901 cells. Furthermore, KFX was able to restore the ER stress activation blocked by 4­phenylbutyrate. In addition, KFX activated autophagy in SGC­7901 cells. These results demonstrated that ER stress, autophagy and the apoptosis­inducing effects of KFX in SGC­7901 cells may achieve promising anticancer effects in numerous other types of cancer. In particular, ER stress may serve an essential role in KFX­induced anticancer effects on gastric carcinoma and a secondary role in autophagy.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Materia Medica/pharmacology , Stomach Neoplasms/pathology , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Models, Biological , Up-Regulation/drug effects
14.
Colloids Surf B Biointerfaces ; 160: 704-714, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29035818

ABSTRACT

A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin. A novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) was synthesized and self-assembled into polymeric nanoparticles. The nanoparticles of VES-g-ε-PLL exhibiting an ultra-small hydrodynamic diameter (24.4nm) and a positive Zeta potential (19.6mV) provided a strong skin-penetrating ability in vivo. Moreover, curcumin could effectively be encapsulated in the polymeric nanoparticles with a drug loading capacity of 3.49% and an encapsulating efficiency of 78.45%. In order to prolong the retention time of the ultra-small curcumin-loaded nanoparticles (CUR-NPs) in the skin, silk fibroin was used as a hydrogel-based matrix to further facilitate topical delivery of the model drug. In vitro studies showed that CUR-NPs incorporated in silk fibroin hydrogel (CUR-NPs-gel) exhibited a slower release profile of curcumin than the plain CUR-gel, without compromising the skin penetration ability of CUR-NPs. In vivo studies on miquimod-induced psoriatic mice showed that CUR-NPs-gel exhibited a higher therapeutic effect than CUR-NPs as the former demonstrated a more powerful skin-permeating capability and a more effective anti-keratinization process. CUR-NPs-gel was therefore able to inhibit the expression of inflammatory cytokines (TNF-α, NF-κB and IL-6) to a greater extent. In conclusion, the permeable nanoparticle-gel system may be a potential carrier for the topical delivery of lipophilic anti-psoriatic drugs.


Subject(s)
Curcumin/administration & dosage , Fibroins/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nanoparticles/chemistry , Psoriasis/drug therapy , Skin/metabolism , Administration, Cutaneous , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Curcumin/chemistry , Curcumin/pharmacokinetics , Disease Models, Animal , Drug Delivery Systems/methods , Humans , Male , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Particle Size , Polymers/chemistry , Psoriasis/pathology , Silk/chemistry
15.
Adv Healthc Mater ; 6(19)2017 Oct.
Article in English | MEDLINE | ID: mdl-28661050

ABSTRACT

How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF-LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF-LIP is capable of encapsulating bFGF (SF-bFGF-LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of -9.41 ± 0.10 mV. SF-LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF-LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF-bFGF-LIP are still preserved but these are severely compromised for the conventional bFGF-liposome (bFGF-LIP). In vivo experiments reveal that SF-bFGF-LIP accelerates the wound closure of mice with deep second-degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF-bFGF-LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF-LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing.


Subject(s)
Burns/drug therapy , Fibroblast Growth Factor 2/administration & dosage , Fibroins/chemistry , Hydrogels/chemistry , Liposomes/chemistry , Wound Healing/drug effects , Animals , Burns/pathology , Diffusion , Drug Compounding/methods , Drug Stability , Fibroblast Growth Factor 2/chemistry , Mice , Mice, Inbred C57BL , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Particle Size , Treatment Outcome , Wound Closure Techniques
16.
Int J Pharm ; 528(1-2): 664-674, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28642201

ABSTRACT

Diabetic nephropathy (DN) is one of the most common and lethal microvascular complications of diabetes. This study aimed to explore whether coenzymeQ10 (CoQ10) as an antioxidant combined with ultrasound-targeted microbubble destruction (UTMD) could reverse the progress of early diabetic nephropathy (DN). CoQ10 has great potential to treat early DN. However, the clinical application of CoQ10 has been limited because of its low aqueous solubility and non-specific distribution. Therefore, CoQ10-loaded liposomes (CoQ10-lip) were prepared and combined with ultrasound microbubbles for the early theranostics of DN. CoQ10-lip exhibited a good round morphology with a diameter of 183±1.7nm and a negative zeta potential of -25.3mV, which was capable of prolonging the release of the encapsulated CoQ10. The early DN rat models were induced by streptozotocin (STZ) and confirmed by contrast-enhanced ultrasound (CEUS) and 24-h urinary albumin. After the administration of CoQ10-lip combined with the UTMD technique to rats with early DN, the morphology and function of the kidney were evaluated by ultrasonography, histological and molecular analyses. The renal hemodynamics were significantly improved, moreover, 24-h urinary protein, and oxidative stress indexes were modulated after treatment with CoQ10-lip+UTMD indicating recovery of renal function. An elevated level of Nphs2 protein and reduced caspase 3 level indicated the preservation of podocytes and inhibition of cell apoptosis after CoQ10-lip+UTMD treatment. The molecular mechanism was associated with the upregulation of Bcl-2 and the downregulation of Bax. Moreover, the combination of CoQ10-lip and ultrasound microbubbles demonstrated a better protective effect on the damaged kidney than the other groups (free CoQ10 or CoQ10-lip+/- UTMD). Conclusively, CoQ10-lip in combination with ultrasound microbubbles might be a potential strategy to reverse the progress of early DN.


Subject(s)
Diabetic Nephropathies/drug therapy , Liposomes/chemistry , Microbubbles/therapeutic use , Theranostic Nanomedicine , Ubiquinone/analogs & derivatives , Animals , Antioxidants/therapeutic use , Diabetes Mellitus, Experimental , Male , Rats , Rats, Sprague-Dawley , Ubiquinone/therapeutic use
17.
Int J Pharm ; 517(1-2): 383-394, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-28007548

ABSTRACT

Extracellular matrix-based biomaterials have many advantages over synthetic polymer materials for regenerative medicine applications. In central nervous system (CNS), basic fibroblast growth factor (bFGF) is widely studied as a potential agent for Parkinson's disease (PD). However, the poor stability of bFGF hampered its clinical use. In this study, CNS-derived biologic scaffold containing bFGF was used to enhance and extend the neuroprotective effect of bFGF on PD targeted therapy. Decellularized brain extracellular matrix (dcBECM) was prepared by chemical extraction. The biocompatibility of dcBECM was evaluated using CCK-8 assay and magnetic resonance imaging (MRI). The controlled-release behavior of dcBECM containing bFGF (bFGF+dcBECM) was confirmed by ELISA assay. Furthermore, the cytocompatibility and neuroprotective effect of bFGF+dcBECM was evaluated in vitro and in vivo. From results, dcBECM showed a three-dimensional network structure with high biocompatibility. MRI of dcBECM implanted rats showed nearly seamless fusion of dcBECM with the adjoining tissues. The cumulative release rate of bFGF+dcBECM in vitro reached to 75.88% at 10h and maintained sustained release trend during the observation. ELISA results in vivo further confirmed the sustained-release behavior (from 12h to 3d) of bFGF+dcBECM in brain tissues. Among the experimental groups, bFGF+dcBECM group showed the highest cell survival rate of PD model cells, improved behavioral recovery and positive expressions of neurotrophic proteins in PD recovered rats. In conclusion, sustained neuroprotection in PD rats was achieved by using bFGF+dcBECM. The combination of dcBECM and bFGF would be a promising therapeutic strategy to realize an effective and safe alternative for CNS disease treatment.


Subject(s)
Brain/surgery , Extracellular Matrix/transplantation , Fibroblast Growth Factor 2/pharmacology , Neuroprotection , Parkinson Disease/surgery , Transplantation/methods , Animals , Brain/drug effects , Brain/metabolism , Brain/ultrastructure , Cell Survival/drug effects , Disease Models, Animal , Drug Liberation , Fibroblast Growth Factor 2/pharmacokinetics , Magnetic Resonance Imaging , Male , Materials Testing , Nerve Growth Factors/metabolism , Neuroimaging , Rats
18.
Chem Biol Interact ; 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27983966

ABSTRACT

Oxidative stress and ER stress play a role in the pathogenesis of gastric ulcer. Kangfuxin (KFX) has been used to treat gastric ulcer in patients. However, the underlying mechanisms of KFX action remain unclear. The current study was undertaken to evaluate the gastroprotective effects of KFX and to determine its potential mechanisms. Ethanol-induced gastric ulcer mouse model was employed. Ethanol pretreated mice were treated with low (0.02 g/kg) and high (0.05 g/kg) dose of KFX for 14 days. Cimetidine (0.8 g/kg) was used as positive control. Histological evaluation of the gastric mucosa revealed that mice treated with ethanol exhibited severe gastric mucosal damage. Ethanol treatment increased plasma and gastric MDA level, decreased plasma and gastric SOD activity, and reduced gastric HO-1 and GCL-c mRNA levels. ER stress markers (CHOP, GRP78, and caspase 12) were up-regulated upon ethanol administration. Moreover, increased cell apoptosis and pro-apoptotic protein Bax and caspase 3 were observed in ethanol treated mice, while the anti-apoptotic protein Bcl 2 was inhibited. Finally, KFX treatment reversed ethanol-induced phenotypes and ameliorated gastric ulcer. Our results demonstrated that the gastroprotective effects of KFX against ethanol-induced gastric ulcer could be attributed to its anti-oxidative stress, anti-ER stress and anti-apoptotic effects.

19.
Sci Rep ; 6: 38332, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27922061

ABSTRACT

Because of the short half-life, either systemic or local administration of bFGF shows significant drawbacks to spinal injury. In this study, an acellular spinal cord scaffold (ASC) was encapsulated in a thermo-sensitive hydrogel to overcome these limitations. The ASC was firstly prepared from the spinal cord of healthy rats and characterized by scanning electronic microscopy and immunohistochemical staining. bFGF could specifically complex with the ASC scaffold via electrostatic or receptor-mediated interactions. The bFGF-ASC complex was further encapsulated into a heparin modified poloxamer (HP) solution to prepare atemperature-sensitive hydrogel (bFGF-ASC-HP). bFGF release from the ASC-HP hydrogel was more slower than that from the bFGF-ASC complex alone. An in vitro cell survival study showed that the bFGF-ASC-HP hydrogel could more effectively promote the proliferation of PC12 cells than a bFGF solution, with an approximate 50% increase in the cell survival rate within 24 h (P < 0.05). Compared with the bFGF solution, bFGF-ASC-HP hydrogel displayed enhanced inhibition of glial scars and obviously improved the functional recovery of the SCI model rat through regeneration of nerve axons and the differentiation of the neural stem cells. In summary, an ASC-HP hydrogel might be a promising carrier to deliver bFGF to an injured spinal cord.


Subject(s)
Drug Delivery Systems/methods , Fibroblast Growth Factor 2/pharmacology , Hydrogels/chemistry , Recovery of Function/drug effects , Spinal Cord Injuries/therapy , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Drug Compounding/methods , Female , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacokinetics , Heparin/chemistry , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/physiology , PC12 Cells , Poloxamer/chemistry , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Temperature , Tissue Scaffolds
20.
Biomaterials ; 107: 44-60, 2016 11.
Article in English | MEDLINE | ID: mdl-27614158

ABSTRACT

Intratumoral drug delivery (IT) is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. However, for most chemotherapies, poor tumor penetration and short retention at the administration site limit their anti-tumor effects. In this work, we describe permeable nanoparticles (NPs) prepared with a novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL). The nanoparticles (NPs) of VES-g-ε-PLL exhibited an ultra-small hydrodynamic diameter (20.8 nm) and positive zeta potential (20.6 mV), which facilitate strong glioma spheroid penetration ability in vitro. Additionally, the hydrophobic model drug docetaxel (DTX) could be effectively encapsulated in the nanoparticles with 3.99% drug loading and 73.37% encapsulation efficiency. To prolong the retention time of DTX-loaded nanoparticles (DTX-NPs) in the tumor, intact decellularized brain extracellular matrix (dBECM) derived from healthy rats was used as a drug depot to adsorb the ultra-small DTX-NPs. The intact DTX-NPs-adsorbing dBECM scaffold was further homogenized into an injectable DTX-NPs-dBECM suspension for intratumoral administration. The DTX-NPs-dBECM suspension exhibited slower DTX release than naked DTX-NPs without compromising the tumor penetration ability of DTX-NPs. An antitumor study showed that the DTX-NPs-dBECM suspension exhibited more powerful in vitro inhibition of tumor spheroid growth than free DTX solution or DTX-NPs. Due to strong tumor penetration ability and prolonged retention, DTX-NPs-dBECM led to complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism was due to enhanced proliferation inhibition and apoptosis of tumor cells and angiogenesis inhibition of glioma after treatment with DTX-NPs-dBECM. Finally, the safety of DTX-NPs-dBECM at the therapeutic dose was demonstrated via pathological HE assay from heart, liver, spleen, lung and kidney tissues. In conclusion, permeable nanoparticle-absorbing dBECM is a potential carrier for intratumoral delivery of common chemotherapeutics.


Subject(s)
Delayed-Action Preparations/administration & dosage , Extracellular Matrix/chemistry , Glioblastoma/drug therapy , Taxoids/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cell-Free System/chemistry , Delayed-Action Preparations/chemical synthesis , Docetaxel , Drug Synergism , Emulsions/chemistry , Glioblastoma/pathology , Injections, Intralesional , Male , Permeability , Rats , Rats, Sprague-Dawley , Taxoids/chemistry , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...