Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Microdevices ; 25(4): 38, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37776382

ABSTRACT

This paper presents a portable point-of-care testing (POCT) device to conduct simultaneous and on-site tests of ABO and Rh(D) forward blood typing and hemophilia diagnosis using only a small amount of human whole blood sample. The POCT device consisted of a spinning module, a measuring circuit, an interdigitated electrode (IDE) for hemophilia diagnosis, and three disposable microfluidic chips for bioassays with anti-A, anti-B, and anti-D, respectively, and measurement of the concentration of factor VIII. Agglutination will occur if red blood cells (RBCs) are exposed to the corresponding antibody. To evaluate the degree of RBC agglutination, a linear sweep voltage, ranging from - 0.5 to + 0.5 V, was applied to the electrodes of the microfluidic chip and the resulting current was measured. For different levels of agglutination, the measured I-V curves were explicitly discriminated, providing five clinical levels from non-agglutination (level 0) to strong agglutination (level 4). The quantitative norm obtained from cubic fitting function of each I-V curve served as the criterion to represent this agglutination level. The ABO blood type was determined by both agglutination levels of the blood sample reacting with anti-A and anti-B. The degree of agglutination with anti-D gave the Rh(D) type. Moreover, the concentration of factor VIII was detected for the determination of hemophilia. Without requiring expensive equipment, this POCT device is especially suitable for usage in emergency or natural disasters to provide quantitative testing in rescue and relief operations.


Subject(s)
Factor VIII , Hemophilia A , Humans , Hemophilia A/diagnosis , Blood Grouping and Crossmatching , Point-of-Care Testing , Erythrocytes , Antibodies
2.
Molecules ; 23(1)2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29301300

ABSTRACT

Recent studies have demonstrated that fat accumulation in bone cells is detrimental to bone mass. Both adipocytes and osteoblasts are derived from common multipotent mesenchymal stem cells (MSCs) and hence the presence of fat may increase adipocyte proliferation, differentiation and fat accumulation while inhibiting osteoblast differentiation and bone formation. Lipids are common constituents in supramolecular vesicles (e.g., micelles or liposomes) that serve as drug delivery systems. Liposomal formulations such as Meriva® were proven to decrease joint pain and improve joint function in osteoarthritis (OA) patients. In this study, we evaluated how lipid types and liposomal formulations affect osteoblast behavior including cell viability, differentiation, mineralization and inflammation. Various liposomal formulations were prepared using different types of lipids, including phosphatidylcholine (PC), 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE), cholesterol (Chol), 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol hydrochloride (DC-cholesterol HCl), and 1,2-dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP) to investigate the impact on osteoblast differentiation and inflammation. The results indicated that cationic lipids, DC-cholesterol and DOTAP, presented higher dose-dependent cytotoxicity and caused high level of inflammatory responses. Due to the natural properties of lipids, all the lipids can induce lipid droplet formation in osteoblasts but the level of lipid droplet accumulation was different. In comparison with cationic lipids, neutral lipids induced less adiposity, and maintained high osteoblast mineralization. Similar to previous researches, we also confirmed an inverse relationship between lipid droplet formation and osteoblast mineralization in 7F2 mouse osteoblasts. Importantly, PC containing liposomes (PC only and PC/DOTAP) suppressed IL-1ß-induced gene expression of COX-2 and MMP-3 but not Chol/DOTAP liposomes or DC-Chol/DOPE liposomes. Taken together, we suggested that PC contained liposomes could provide the best liposomal formulation for the treatment of bone diseases.


Subject(s)
Lipids/chemistry , Liposomes/chemistry , Liposomes/pharmacology , Osteoblasts/drug effects , Animals , Calcification, Physiologic/drug effects , Cations/chemistry , Cell Differentiation/drug effects , Cell Line , Cell Survival/drug effects , Cholesterol/chemistry , Cyclooxygenase 2/genetics , Drug Delivery Systems/methods , Fatty Acids, Monounsaturated/chemistry , Lipid Droplets/chemistry , Lipids/pharmacology , Matrix Metalloproteinase 3/genetics , Mice , Osteoblasts/physiology , Osteogenesis/drug effects , Phosphatidylcholines/chemistry , Quaternary Ammonium Compounds/chemistry
3.
Drug Des Devel Ther ; 9: 2285-300, 2015.
Article in English | MEDLINE | ID: mdl-25945040

ABSTRACT

Curcumin (Cur) and bisdemethoxycurcumin (BDMC), extracted from Curcuma longa, are poorly water-soluble polyphenol compounds that have shown anti-inflammatory potential for the treatment of osteoarthritis. To increase cellular uptake of Cur and BDMC in bone tissue, soybean phosphatidylcholines were used for liposome formulation. In this study, curcuminoid (Cur and BDMC)-loaded liposomes were characterized in terms of particle size, encapsulation efficiency, liposome stability, and cellular uptake. The results show that there is about 70% entrapment efficiency of Cur and BDMC in liposomes and that particle sizes are stable after liposome formation. Both types of liposome can inhibit macrophage inflammation and osteoclast differential activities. In comparison with free drugs (Cur and BDMC), curcuminoid-loaded liposomes were less cytotoxic and expressed high cellular uptake of the drugs. Of note is that Cur-loaded liposomes can prevent liposome-dependent inhibition of osteoblast differentiation and mineralization, but BDMC-loaded liposomes could not. With interleukin (IL)-1ß stimulation, curcuminoid-loaded liposomes can successfully downregulate the expression of inflammatory markers on osteoblasts, and show a high osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio to prevent osteoclastogenesis. In the present study, we demonstrated that Cur and BDMC can be successfully encapsulated in liposomes and can reduce osteoclast activity and maintain osteoblast functions. Therefore, curcuminoid-loaded liposomes may slow osteoarthritis progression.


Subject(s)
Curcumin/analogs & derivatives , Osteoarthritis/drug therapy , Alkaline Phosphatase/metabolism , Animals , Biological Availability , Bone and Bones/drug effects , Bone and Bones/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemistry, Pharmaceutical , Curcumin/administration & dosage , Curcumin/therapeutic use , Diarylheptanoids , Drug Compounding , Liposomes , Mice , Nanoparticles , Nitrites/chemistry , Osteoclasts/drug effects , Osteoclasts/enzymology , Particle Size
4.
J Mater Chem B ; 2(39): 6730-6737, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-32261869

ABSTRACT

Nonviral vectors used in gene delivery, such as cationic polymers and dendrimers, exhibit problems of inherent toxicity and inefficient cytosolic access that must be overcome. In this work, a simple co-caging strategy focused on overcoming the two limitations of dendrimers for siRNA transfection is reported. By embedding gold nanoclusters within a dendrimer, the structure of the dendrimer becomes compact and allows an irreversible backfolding of exterior primary amines from the branch to the core, which dramatically eliminates dendrimer toxicity and enhances safety. Gold nanoclusters with strong emissions can confer a trackable function to dendrimers acting as a transfection vector (TV) for siRNA transfection. In order to maximize efficiency of complexing with siRNA, the TV further incorporated caged methyl motifs, transforming the partially tertiary amines into quaternary ammonium ions to form a methylated TV (MTV). The cellular responses to the MTV were similar to those of the TV, but the responses to the MTV can also enhance cytosolic access to better deliver siRNA for mRNA knockdown. This finding offers a novel perspective to facilitate the use of various cationic polymers for detoxification in biological applications through a co-caging strategy without further chemical modifications.

SELECTION OF CITATIONS
SEARCH DETAIL
...