Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Front Immunol ; 15: 1415102, 2024.
Article in English | MEDLINE | ID: mdl-39007132

ABSTRACT

Human regulatory T cells (Treg) suppress other immune cells. Their dysfunction contributes to the pathophysiology of autoimmune diseases, including type 1 diabetes (T1D). Infusion of Tregs is being clinically evaluated as a novel way to prevent or treat T1D. Genetic modification of Tregs, most notably through the introduction of a chimeric antigen receptor (CAR) targeting Tregs to pancreatic islets, may improve their efficacy. We evaluated CAR targeting of human Tregs to monocytes, a human ß cell line and human islet ß cells in vitro. Targeting of HLA-A2-CAR (A2-CAR) bulk Tregs to HLA-A2+ cells resulted in dichotomous cytotoxic killing of human monocytes and islet ß cells. In exploring subsets and mechanisms that may explain this pattern, we found that CD39 expression segregated CAR Treg cytotoxicity. CAR Tregs from individuals with more CD39low/- Tregs and from individuals with genetic polymorphism associated with lower CD39 expression (rs10748643) had more cytotoxicity. Isolated CD39- CAR Tregs had elevated granzyme B expression and cytotoxicity compared to the CD39+ CAR Treg subset. Genetic overexpression of CD39 in CD39low CAR Tregs reduced their cytotoxicity. Importantly, ß cells upregulated protein surface expression of PD-L1 and PD-L2 in response to A2-CAR Tregs. Blockade of PD-L1/PD-L2 increased ß cell death in A2-CAR Treg co-cultures suggesting that the PD-1/PD-L1 pathway is important in protecting islet ß cells in the setting of CAR immunotherapy. In summary, introduction of CAR can enhance biological differences in subsets of Tregs. CD39+ Tregs represent a safer choice for CAR Treg therapies targeting tissues for tolerance induction.


Subject(s)
Apyrase , Receptors, Chimeric Antigen , T-Lymphocytes, Regulatory , Humans , Apyrase/immunology , Apyrase/metabolism , T-Lymphocytes, Regulatory/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Cytotoxicity, Immunologic , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , HLA-A2 Antigen/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Antigens, CD
2.
Circ Res ; 132(5): 545-564, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36744494

ABSTRACT

OBJECTIVE: Mutations in BMPR2 (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH. METHODS: SMC-specific Bmpr2-/- mice (BKOSMC) were created and compared to controls in room air, after 3 weeks of hypoxia as a second hit, and following 4 weeks of normoxic recovery. Echocardiography, right ventricular systolic pressure, and right ventricular hypertrophy were assessed as indices of pulmonary hypertension. Proliferation, contractility, gene and protein expression of PASMC from BKOSMC mice, human PASMC with BMPR2 reduced by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation were compared to controls, to investigate the phenotype and underlying mechanism. RESULTS: BKOSMC mice showed reduced hypoxia-induced vasoconstriction and persistent pulmonary hypertension following recovery from hypoxia, associated with sustained muscularization of distal pulmonary arteries. PASMC from mutant compared to control mice displayed reduced contractility at baseline and in response to angiotensin II, increased proliferation and apoptosis resistance. Human PASMC with reduced BMPR2 by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation showed a similar phenotype related to upregulation of pERK1/2 (phosphorylated extracellular signal related kinase 1/2)-pP38-pSMAD2/3 mediating elevation in ARRB2 (ß-arrestin2), pAKT (phosphorylated protein kinase B) inactivation of GSK3-beta, CTNNB1 (ß-catenin) nuclear translocation and reduction in RHOA (Ras homolog family member A) and RAC1 (Ras-related C3 botulinum toxin substrate 1). Decreasing ARRB2 in PASMC with reduced BMPR2 restored normal signaling, reversed impaired contractility and attenuated heightened proliferation and in mice with inducible loss of BMPR2 in SMC, decreasing ARRB2 prevented persistent pulmonary hypertension. CONCLUSIONS: Agents that neutralize the elevated ARRB2 resulting from loss of BMPR2 in PASMC could prevent or reverse the aberrant hypocontractile and hyperproliferative phenotype of these cells in PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Humans , Mice , beta-Arrestin 2/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Glycogen Synthase Kinase 3/metabolism , Hypertension, Pulmonary/metabolism , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , RNA/metabolism
3.
Circ Res ; 128(3): 401-418, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33322916

ABSTRACT

RATIONALE: In pulmonary arterial hypertension (PAH), endothelial dysfunction and obliterative vascular disease are associated with DNA damage and impaired signaling of BMPR2 (bone morphogenetic protein type 2 receptor) via two downstream transcription factors, PPARγ (peroxisome proliferator-activated receptor gamma), and p53. OBJECTIVE: We investigated the vasculoprotective and regenerative potential of a newly identified PPARγ-p53 transcription factor complex in the pulmonary endothelium. METHODS AND RESULTS: In this study, we identified a pharmacologically inducible vasculoprotective mechanism in pulmonary arterial and lung MV (microvascular) endothelial cells in response to DNA damage and oxidant stress regulated in part by a BMPR2 dependent transcription factor complex between PPARγ and p53. Chromatin immunoprecipitation sequencing and RNA-sequencing established an inducible PPARγ-p53 mediated regenerative program regulating 19 genes involved in lung endothelial cell survival, angiogenesis and DNA repair including, EPHA2 (ephrin type-A receptor 2), FHL2 (four and a half LIM domains protein 2), JAG1 (jagged 1), SULF2 (extracellular sulfatase Sulf-2), and TIGAR (TP53-inducible glycolysis and apoptosis regulator). Expression of these genes was partially impaired when the PPARγ-p53 complex was pharmacologically disrupted or when BMPR2 was reduced in pulmonary artery endothelial cells (PAECs) subjected to oxidative stress. In endothelial cell-specific Bmpr2-knockout mice unable to stabilize p53 in endothelial cells under oxidative stress, Nutlin-3 rescued endothelial p53 and PPARγ-p53 complex formation and induced target genes, such as APLN (apelin) and JAG1, to regenerate pulmonary microvessels and reverse pulmonary hypertension. In PAECs from BMPR2 mutant PAH patients, pharmacological induction of p53 and PPARγ-p53 genes repaired damaged DNA utilizing genes from the nucleotide excision repair pathway without provoking PAEC apoptosis. CONCLUSIONS: We identified a novel therapeutic strategy that activates a vasculoprotective gene regulation program in PAECs downstream of dysfunctional BMPR2 to rehabilitate PAH PAECs, regenerate pulmonary microvessels, and reverse disease. Our studies pave the way for p53-based vasculoregenerative therapies for PAH by extending the therapeutic focus to PAEC dysfunction and to DNA damage associated with PAH progression.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Endothelial Cells/drug effects , Imidazoles/pharmacology , Neovascularization, Physiologic/drug effects , PPAR gamma/metabolism , Piperazines/pharmacology , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Artery/drug effects , Regeneration/drug effects , Tumor Suppressor Protein p53/metabolism , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Gene Expression Regulation , Humans , Male , Mice , Mice, Knockout , Oxidative Stress , PPAR gamma/genetics , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Signal Transduction , Tumor Suppressor Protein p53/genetics
4.
Urol Oncol ; 38(3): 77.e9-77.e15, 2020 03.
Article in English | MEDLINE | ID: mdl-31570249

ABSTRACT

OBJECTIVE: To use adaptive genetic algorithms (AGA) in combination with single-cell flow cytometry technology to develop a noninvasive test to detect bladder cancer. MATERIALS AND METHODS: Fifty high grade, cystoscopy confirmed, superficial bladder cancer patients, and 15 healthy donor early morning urine samples were collected in an optimized urine collection media. These samples were then used to develop an assay to distinguish healthy from cancer patients' urine using AGA in combination with single-cell flow cytometry technology. Cell recovery and test performance were verified based on cystoscopy and histology for both bladder cancer determination and PD-L1 status. RESULTS: Bladder cancer patients had a significantly higher percentage of white blood cells with substantial PD-L1 expression (P< 0.0001), significantly increased post-G1 epithelial cells (P < 0.005) and a significantly higher DNA index above 1.05 (P < 0.05). AGA allowed parameter optimization to differentiate normal from malignant cells with high accuracy. The resulting prediction model showed 98% sensitivity and 87% specificity with a high area under the ROC value (90%). CONCLUSIONS: Using single-cell technology and machine learning; we developed a new assay to distinguish bladder cancer from healthy patients. Future studies are planned to validate this assay.


Subject(s)
Algorithms , Biomarkers, Tumor/urine , Immunotherapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/urine , Aged , Female , Flow Cytometry/methods , Humans , Male , Neoplasm Invasiveness , Sensitivity and Specificity , Single-Cell Analysis , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics
5.
Circ Res ; 124(2): 211-224, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30582451

ABSTRACT

RATIONALE: Maintaining endothelial cells (EC) as a monolayer in the vessel wall depends on their metabolic state and gene expression profile, features influenced by contact with neighboring cells such as pericytes and smooth muscle cells (SMC). Failure to regenerate a normal EC monolayer in response to injury can result in occlusive neointima formation in diseases such as atherosclerosis and pulmonary arterial hypertension. OBJECTIVE: We investigated the nature and functional importance of contact-dependent communication between SMC and EC to maintain EC integrity. METHODS AND RESULTS: We found that in SMC and EC contact cocultures, BMPR2 (bone morphogenetic protein receptor 2) is required by both cell types to produce collagen IV to activate ILK (integrin-linked kinase). This enzyme directs p-JNK (phospho-c-Jun N-terminal kinase) to the EC membrane, where it stabilizes presenilin1 and releases N1ICD (Notch1 intracellular domain) to promote EC proliferation. This response is necessary for EC regeneration after carotid artery injury. It is deficient in EC-SMC Bmpr2 double heterozygous mice in association with reduced collagen IV production, decreased N1ICD, and attenuated EC proliferation, but can be rescued by targeting N1ICD to EC. Deletion of EC- Notch1 in transgenic mice worsens hypoxia-induced pulmonary hypertension, in association with impaired EC regenerative function associated with loss of precapillary arteries. We further determined that N1ICD maintains EC proliferative capacity by increasing mitochondrial mass and by inducing the phosphofructokinase PFKFB3 (fructose-2,6-bisphosphatase 3). Chromatin immunoprecipitation sequencing analyses showed that PFKFB3 is required for citrate-dependent H3K27 acetylation at enhancer sites of genes regulated by the acetyl transferase p300 and by N1ICD or the N1ICD target MYC and necessary for EC proliferation and homeostasis. CONCLUSIONS: Thus, SMC-EC contact is required for activation of Notch1 by BMPR2, to coordinate metabolism with chromatin remodeling of genes that enable EC regeneration, and to maintain monolayer integrity and vascular homeostasis in response to injury.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/metabolism , Carotid Artery Injuries/metabolism , Cell Communication , Cell Proliferation , Endothelial Cells/metabolism , Energy Metabolism , Epigenesis, Genetic , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Receptor, Notch1/metabolism , Adult , Animals , Bone Morphogenetic Protein Receptors, Type II/deficiency , Bone Morphogenetic Protein Receptors, Type II/genetics , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Cells, Cultured , Chromatin Assembly and Disassembly , Coculture Techniques , Disease Models, Animal , Endothelial Cells/pathology , Female , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Male , Mice, Knockout , Middle Aged , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Receptor, Notch1/deficiency , Receptor, Notch1/genetics , Signal Transduction , Vascular Remodeling , Young Adult
6.
Circulation ; 136(20): 1920-1935, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-28935667

ABSTRACT

BACKGROUND: Immune dysregulation has been linked to occlusive vascular remodeling in pulmonary arterial hypertension (PAH) that is hereditary, idiopathic, or associated with other conditions. Circulating autoantibodies, lung perivascular lymphoid tissue, and elevated cytokines have been related to PAH pathogenesis but without a clear understanding of how these abnormalities are initiated, perpetuated, and connected in the progression of disease. We therefore set out to identify specific target antigens in PAH lung immune complexes as a starting point toward resolving these issues to better inform future application of immunomodulatory therapies. METHODS: Lung immune complexes were isolated and PAH target antigens were identified by liquid chromatography tandem mass spectrometry, confirmed by enzyme-linked immunosorbent assay, and localized by confocal microscopy. One PAH antigen linked to immunity and inflammation was pursued and a link to PAH pathophysiology was investigated by next-generation sequencing, functional studies in cultured monocytes and endothelial cells, and hemodynamic and lung studies in a rat. RESULTS: SAM domain and HD domain-containing protein 1 (SAMHD1), an innate immune factor that suppresses HIV replication, was identified and confirmed as highly expressed in immune complexes from 16 hereditary and idiopathic PAH versus 12 control lungs. Elevated SAMHD1 was localized to endothelial cells, perivascular dendritic cells, and macrophages, and SAMHD1 antibodies were prevalent in tertiary lymphoid tissue. An unbiased screen using metagenomic sequencing related SAMHD1 to increased expression of human endogenous retrovirus K (HERV-K) in PAH versus control lungs (n=4). HERV-K envelope and deoxyuridine triphosphate nucleotidohydrolase mRNAs were elevated in PAH versus control lungs (n=10), and proteins were localized to macrophages. HERV-K deoxyuridine triphosphate nucleotidohydrolase induced SAMHD1 and proinflammatory cytokines (eg, interleukin 6, interleukin 1ß, and tumor necrosis factor α) in circulating monocytes, pulmonary arterial endothelial cells, and also activated B cells. Vulnerability of pulmonary arterial endothelial cells (PAEC) to apoptosis was increased by HERV-K deoxyuridine triphosphate nucleotidohydrolase in an interleukin 6-independent manner. Furthermore, 3 weekly injections of HERV-K deoxyuridine triphosphate nucleotidohydrolase induced hemodynamic and vascular changes of pulmonary hypertension in rats (n=8) and elevated interleukin 6. CONCLUSIONS: Our study reveals that upregulation of the endogenous retrovirus HERV-K could both initiate and sustain activation of the immune system and cause vascular changes associated with PAH.


Subject(s)
Hypertension, Pulmonary/immunology , Inflammation Mediators/immunology , Up-Regulation/physiology , Viral Proteins/biosynthesis , Viral Proteins/immunology , Adolescent , Adult , Animals , Antigen-Antibody Complex/biosynthesis , Antigen-Antibody Complex/immunology , Cells, Cultured , Child , Coculture Techniques , Female , Humans , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Infant , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Rats , Rats, Sprague-Dawley , SAM Domain and HD Domain-Containing Protein 1/biosynthesis , SAM Domain and HD Domain-Containing Protein 1/immunology , Young Adult
7.
Arterioscler Thromb Vasc Biol ; 37(8): 1559-1569, 2017 08.
Article in English | MEDLINE | ID: mdl-28619995

ABSTRACT

OBJECTIVE: We determined in patients with pulmonary arterial (PA) hypertension (PAH) whether in addition to increased production of elastase by PA smooth muscle cells previously reported, PA elastic fibers are susceptible to degradation because of their abnormal assembly. APPROACH AND RESULTS: Fibrillin-1 and elastin are the major components of elastic fibers, and fibrillin-1 binds bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-ß1 (TGFß1). Thus, we considered whether BMPs like TGFß1 contribute to elastic fiber assembly and whether this process is perturbed in PAH particularly when the BMP receptor, BMPR2, is mutant. We also assessed whether in mice with Bmpr2/1a compound heterozygosity, elastic fibers are susceptible to degradation. In PA smooth muscle cells and adventitial fibroblasts, TGFß1 increased elastin mRNA, but the elevation in elastin protein was dependent on BMPR2; TGFß1 and BMP4, via BMPR2, increased extracellular accumulation of fibrillin-1. Both BMP4- and TGFß1-stimulated elastic fiber assembly was impaired in idiopathic (I) PAH-PA adventitial fibroblast versus control cells, particularly those with hereditary (H) PAH and a BMPR2 mutation. This was related to profound reductions in elastin and fibrillin-1 mRNA. Elastin protein was increased in IPAH PA adventitial fibroblast by TGFß1 but only minimally so in BMPR2 mutant cells. Fibrillin-1 protein increased only modestly in IPAH or HPAH PA adventitial fibroblasts stimulated with BMP4 or TGFß1. In Bmpr2/1a heterozygote mice, reduced PA fibrillin-1 was associated with elastic fiber susceptibility to degradation and more severe pulmonary hypertension. CONCLUSIONS: Disrupting BMPR2 impairs TGFß1- and BMP4-mediated elastic fiber assembly and is of pathophysiologic significance in PAH.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/metabolism , Elastic Tissue/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Hypertension, Pulmonary/metabolism , Pulmonary Artery/drug effects , Transforming Growth Factor beta/pharmacology , Vascular Remodeling , Animals , Bone Morphogenetic Protein 4/pharmacology , Bone Morphogenetic Protein Receptors, Type I/deficiency , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type II/deficiency , Bone Morphogenetic Protein Receptors, Type II/genetics , Case-Control Studies , Cells, Cultured , Disease Models, Animal , Elastic Tissue/pathology , Elastic Tissue/physiopathology , Elastin/genetics , Elastin/metabolism , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/pathology , Familial Primary Pulmonary Hypertension/physiopathology , Fibrillin-1/genetics , Fibrillin-1/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Predisposition to Disease , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mutation , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phenotype , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , RNA Interference , Transfection
8.
JCI Insight ; 2(2): e90427, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28138562

ABSTRACT

Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress.


Subject(s)
Amphetamine-Related Disorders/genetics , Amphetamines/pharmacology , DNA Damage/drug effects , Endothelial Cells/drug effects , Hypertension, Pulmonary/genetics , Hypoxia/genetics , Methamphetamine/pharmacology , Mitochondria/drug effects , Adult , Amphetamine-Related Disorders/metabolism , Animals , Caspase 3/drug effects , Caspase 3/metabolism , Electron Transport/drug effects , Endothelial Cells/metabolism , Female , Humans , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , In Vitro Techniques , Male , Mice , Middle Aged , Mitochondria/metabolism , Oxidative Phosphorylation , Protein Phosphatase 2/drug effects , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Reactive Oxygen Species/metabolism , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Vascular Remodeling/drug effects , Vascular Remodeling/genetics
9.
Am J Respir Crit Care Med ; 192(3): 356-66, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26030479

ABSTRACT

RATIONALE: Pulmonary arterial hypertension is characterized by endothelial dysregulation, but global changes in gene expression have not been related to perturbations in function. OBJECTIVES: RNA sequencing was used to discriminate changes in transcriptomes of endothelial cells cultured from lungs of patients with idiopathic pulmonary arterial hypertension versus control subjects and to assess the functional significance of major differentially expressed transcripts. METHODS: The endothelial transcriptomes from the lungs of seven control subjects and six patients with idiopathic pulmonary arterial hypertension were analyzed. Differentially expressed genes were related to bone morphogenetic protein type 2 receptor (BMPR2) signaling. Those down-regulated were assessed for function in cultured cells and in a transgenic mouse. MEASUREMENTS AND MAIN RESULTS: Fold differences in 10 genes were significant (P < 0.05), four increased and six decreased in patients versus control subjects. No patient was mutant for BMPR2. However, knockdown of BMPR2 by siRNA in control pulmonary arterial endothelial cells recapitulated 6 of 10 patient-related gene changes, including decreased collagen IV (COL4A1, COL4A2) and ephrinA1 (EFNA1). Reduction of BMPR2-regulated transcripts was related to decreased ß-catenin. Reducing COL4A1, COL4A2, and EFNA1 by siRNA inhibited pulmonary endothelial adhesion, migration, and tube formation. In mice null for the EFNA1 receptor, EphA2, versus control animals, vascular endothelial growth factor receptor blockade and hypoxia caused more severe pulmonary hypertension, judged by elevated right ventricular systolic pressure, right ventricular hypertrophy, and loss of small arteries. CONCLUSIONS: The novel relationship between BMPR2 dysfunction and reduced expression of endothelial COL4 and EFNA1 may underlie vulnerability to injury in pulmonary arterial hypertension.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Endothelium, Vascular/physiopathology , Familial Primary Pulmonary Hypertension/genetics , Sequence Analysis, RNA/methods , Adolescent , Adult , Animals , Cells, Cultured , Familial Primary Pulmonary Hypertension/physiopathology , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Signal Transduction/genetics , Transcriptome/genetics , Young Adult
10.
Cell Metab ; 21(4): 596-608, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25863249

ABSTRACT

Mitochondrial dysfunction, inflammation, and mutant bone morphogenetic protein receptor 2 (BMPR2) are associated with pulmonary arterial hypertension (PAH), an incurable disease characterized by pulmonary arterial (PA) endothelial cell (EC) apoptosis, decreased microvessels, and occlusive vascular remodeling. We hypothesized that reduced BMPR2 induces PAEC mitochondrial dysfunction, promoting a pro-inflammatory or pro-apoptotic state. Mice with EC deletion of BMPR2 develop hypoxia-induced pulmonary hypertension that, in contrast to non-transgenic littermates, does not reverse upon reoxygenation and is associated with reduced PA microvessels and lung EC p53, PGC1α and TFAM, regulators of mitochondrial biogenesis, and mitochondrial DNA. Decreasing PAEC BMPR2 by siRNA during reoxygenation represses p53, PGC1α, NRF2, TFAM, mitochondrial membrane potential, and ATP and induces mitochondrial DNA deletion and apoptosis. Reducing PAEC BMPR2 in normoxia increases p53, PGC1α, TFAM, mitochondrial membrane potential, ATP production, and glycolysis, and induces mitochondrial fission and a pro-inflammatory state. These features are recapitulated in PAECs from PAH patients with mutant BMPR2.


Subject(s)
Cell Survival/physiology , Endothelial Cells/physiology , Hypertension, Pulmonary/metabolism , Mitochondria/metabolism , Models, Biological , Pulmonary Artery/physiology , Regeneration/physiology , Analysis of Variance , Animals , Blotting, Western , Bone Morphogenetic Protein Receptors, Type II/metabolism , DNA/metabolism , DNA Primers/genetics , Flow Cytometry , Fluorescent Antibody Technique , HEK293 Cells , Humans , Hypertension, Pulmonary/physiopathology , Membrane Potential, Mitochondrial/physiology , Mice , Polymerase Chain Reaction , Pulmonary Artery/cytology , RNA, Small Interfering/genetics
11.
Nat Protoc ; 9(3): 694-710, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24577360

ABSTRACT

The ability to isolate and analyze rare circulating tumor cells (CTCs) has the potential to further our understanding of cancer metastasis and enhance the care of cancer patients. In this protocol, we describe the procedure for isolating rare CTCs from blood samples by using tumor antigen-independent microfluidic CTC-iChip technology. The CTC-iChip uses deterministic lateral displacement, inertial focusing and magnetophoresis to sort up to 107 cells/s. By using two-stage magnetophoresis and depletion antibodies against leukocytes, we achieve 3.8-log depletion of white blood cells and a 97% yield of rare cells with a sample processing rate of 8 ml of whole blood/h. The CTC-iChip is compatible with standard cytopathological and RNA-based characterization methods. This protocol describes device production, assembly, blood sample preparation, system setup and the CTC isolation process. Sorting 8 ml of blood sample requires 2 h including setup time, and chip production requires 2-5 d.


Subject(s)
Cell Separation/methods , Microfluidic Analytical Techniques/methods , Neoplastic Cells, Circulating , Humans , Insect Proteins , Magnets
12.
PLoS One ; 9(2): e90384, 2014.
Article in English | MEDLINE | ID: mdl-24587345

ABSTRACT

Rab5, the prototypical Rab GTPase and master regulator of the endocytic pathway, is encoded as three differentially expressed isoforms, Rab5A, Rab5B and Rab5C. Here, we examined the differential effects of Rab5 isoform silencing on cell motility and report that Rab5C, but neither Rab5A nor Rab5B, is selectively associated with the growth factor-activation of Rac1 and with enhanced cell motility. Initial observations revealed that silencing of Rab5C expression, but neither Rab5A nor Rab5C, led to spindle-shaped cells that displayed reduced formation of membrane ruffles. When subjected to a scratch wound assay, cells depleted of Rab5C, but not Rab5A or Rab5B, demonstrated reduced cell migration. U937 cells depleted of Rab5C also displayed reduced cell motility in a Transwell plate migration assay. To examine activation of Rac, HeLa cells stably expressing GFP-Rac1 were independently depleted of Rab5A, Rab5B or Rab5C and seeded onto coverslips imprinted with a crossbow pattern. 3-D GFP-Rac1 images of micro-patterned cells show that GFP-Rac1 was less localized to the cell periphery in the absence of Rab5C. To confirm the connection between Rab5C and Rac activation, HeLa cells depleted of Rab5 isoforms were starved and then stimulated with EGF. Rac1 pull-down assays revealed that EGF-stimulated Rac1 activity was significantly suppressed in Rab5C-suppressed cells. To determine whether events upstream of Rac activation were affected by Rab5C, we observed that EGF-stimulated Akt phosphorylation was suppressed in cells depleted of Rab5C. Finally, since spatio-temporal assembly/disassembly of adhesion complexes are essential components of cell migration, we examined the effect of Rab5 isoform depletion on the formation of focal adhesion complexes. Rab5C-depleted HeLa cells have significantly fewer focal adhesion foci, in accordance with the lack of persistent lamellipodial protrusions and reduced directional migration. We conclude that Rab5 isoforms selectively oversee the multiple signaling and trafficking events associated with the endocytic network.


Subject(s)
Endocytosis/genetics , Endosomes/metabolism , rab5 GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , Cell Adhesion , Cell Movement , Endosomes/ultrastructure , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , rab5 GTP-Binding Proteins/antagonists & inhibitors , rab5 GTP-Binding Proteins/genetics , rac1 GTP-Binding Protein/genetics
13.
J Exp Med ; 211(2): 263-80, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24446489

ABSTRACT

Idiopathic pulmonary arterial hypertension (PAH [IPAH]) is an insidious and potentially fatal disease linked to a mutation or reduced expression of bone morphogenetic protein receptor 2 (BMPR2). Because intravascular inflammatory cells are recruited in IPAH pathogenesis, we hypothesized that reduced BMPR2 enhances production of the potent chemokine granulocyte macrophage colony-stimulating factor (GM-CSF) in response to an inflammatory perturbation. When human pulmonary artery (PA) endothelial cells deficient in BMPR2 were stimulated with tumor necrosis factor (TNF), a twofold increase in GM-CSF was observed and related to enhanced messenger RNA (mRNA) translation. The mechanism was associated with disruption of stress granule formation. Specifically, loss of BMPR2 induced prolonged phospho-p38 mitogen-activated protein kinase (MAPK) in response to TNF, and this increased GADD34-PP1 phosphatase activity, dephosphorylating eukaryotic translation initiation factor (eIF2α), and derepressing GM-CSF mRNA translation. Lungs from IPAH patients versus unused donor controls revealed heightened PA expression of GM-CSF co-distributing with increased TNF and expanded populations of hematopoietic and endothelial GM-CSF receptor α (GM-CSFRα)-positive cells. Moreover, a 3-wk infusion of GM-CSF in mice increased hypoxia-induced PAH, in association with increased perivascular macrophages and muscularized distal arteries, whereas blockade of GM-CSF repressed these features. Thus, reduced BMPR2 can subvert a stress granule response, heighten GM-CSF mRNA translation, increase inflammatory cell recruitment, and exacerbate PAH.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/deficiency , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Hypertension, Pulmonary/etiology , Adolescent , Adult , Animals , Bone Morphogenetic Protein Receptors, Type II/antagonists & inhibitors , Bone Morphogenetic Protein Receptors, Type II/genetics , Case-Control Studies , Child , Endothelial Cells/metabolism , Eukaryotic Initiation Factor-2/metabolism , Familial Primary Pulmonary Hypertension , Female , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , MAP Kinase Signaling System , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocytes, Smooth Muscle/metabolism , Protein Biosynthesis , Protein Phosphatase 1/metabolism , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Young Adult
14.
Sci Transl Med ; 5(179): 179ra47, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23552373

ABSTRACT

Circulating tumor cells (CTCs) are shed into the bloodstream from primary and metastatic tumor deposits. Their isolation and analysis hold great promise for the early detection of invasive cancer and the management of advanced disease, but technological hurdles have limited their broad clinical utility. We describe an inertial focusing-enhanced microfluidic CTC capture platform, termed "CTC-iChip," that is capable of sorting rare CTCs from whole blood at 10(7) cells/s. Most importantly, the iChip is capable of isolating CTCs using strategies that are either dependent or independent of tumor membrane epitopes, and thus applicable to virtually all cancers. We specifically demonstrate the use of the iChip in an expanded set of both epithelial and nonepithelial cancers including lung, prostate, pancreas, breast, and melanoma. The sorting of CTCs as unfixed cells in solution allows for the application of high-quality clinically standardized morphological and immunohistochemical analyses, as well as RNA-based single-cell molecular characterization. The combination of an unbiased, broadly applicable, high-throughput, and automatable rare cell sorting technology with generally accepted molecular assays and cytology standards will enable the integration of CTC-based diagnostics into the clinical management of cancer.


Subject(s)
Antigens, Neoplasm/metabolism , Cell Separation/methods , Microfluidics/methods , Neoplastic Cells, Circulating/pathology , Cell Line, Tumor , Cell Shape , Cell Size , Female , Humans , Magnetic Phenomena , Male , RNA, Neoplasm/metabolism
15.
PLoS One ; 7(9): e46485, 2012.
Article in English | MEDLINE | ID: mdl-23029530

ABSTRACT

Expression of the hominoid-specific TBC1D3 oncoprotein enhances growth factor receptor signaling and subsequently promotes cellular proliferation and survival. Here we report that TBC1D3 is degraded in response to growth factor signaling, suggesting that TBC1D3 expression is regulated by a growth factor-driven negative feedback loop. To gain a better understanding of how TBC1D3 is regulated, we studied the effects of growth factor receptor signaling on TBC1D3 post-translational processing and turnover. Using a yeast two-hybrid screen, we identified CUL7, the scaffolding subunit of the CUL7 E3 ligase complex, as a TBC1D3-interacting protein. We show that CUL7 E3 ligase ubiquitinates TBC1D3 in response to serum stimulation. Moreover, TBC1D3 recruits F-box 8 (Fbw8), the substrate recognition domain of CUL7 E3 ligase, in pull-down experiments and in an in vitro assay. Importantly, alkaline phosphatase treatment of TBC1D3 suppresses its ability to recruit Fbw8, indicating that TBC1D3 phosphorylation is critical for its ubiquitination and degradation. We conclude that serum- and growth factor-stimulated TBC1D3 ubiquitination and degradation are regulated by its interaction with CUL7-Fbw8.


Subject(s)
Cullin Proteins/metabolism , F-Box Proteins/metabolism , GTPase-Activating Proteins/metabolism , Protein Processing, Post-Translational , Proteolysis , Proto-Oncogene Proteins/metabolism , HeLa Cells , Humans , Intercellular Signaling Peptides and Proteins/physiology , Leupeptins/pharmacology , Phosphorylation , Proteasome Inhibitors/pharmacology , Protein Binding , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
16.
J Biol Chem ; 284(44): 30328-38, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19723633

ABSTRACT

Ligand-mediated endocytosis is an intricate regulatory mechanism for epidermal growth factor receptor (EGFR) signal transduction. Coordinated trafficking of EGFR ensures its temporal and spatial communication with downstream signaling effectors. We focused our work on Rab5, a monomeric GTPase shown to participate in early stages of the endocytic pathway. Rab5 has three isoforms (A, B, and C) sharing more than 90% of sequence identity. We individually ablated endogenous isoforms in HeLa cells with short interfering RNAs and examined the loss-of-function phenotypes. We found that suppression of Rab5A or 5B hampered the degradation of EGFR, whereas Rab5C depletion had very little effect. The differential delay of EGFR degradation also corresponds with retarded progression of EGFR from early to late endosomes. We investigated the activators/effectors of Rab5A that can potentially separate its potency in EGFR degradation from other isoforms and found that Rin1, a Rab5 exchange factor, preferably associated with Rab5A. Moreover, Rab5A activation is sensitive to EGF stimulation, and suppression of Rin1 diminished this sensitivity. Based on our results together with previous work showing that Rin1 interacts with signal transducing adapter molecule to facilitate the degradation of EGFR (Kong, C., Su, X., Chen, P. I., and Stahl, P. D. (2007) J. Biol. Chem. 282, 15294-15301), we hypothesize that the selective association of Rab5A and Rin1 contributes to the dominance of Rab5A in EGFR trafficking, whereas the other isoforms may have major functions unrelated to the EGFR degradation pathway.


Subject(s)
ErbB Receptors/metabolism , rab5 GTP-Binding Proteins/physiology , Endocytosis , Endosomes/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Protein Denaturation , Protein Isoforms/genetics , Protein Transport , RNA, Small Interfering/pharmacology , rab5 GTP-Binding Proteins/genetics
17.
J Biol Chem ; 282(20): 15294-301, 2007 May 18.
Article in English | MEDLINE | ID: mdl-17403676

ABSTRACT

Rin1, the prototype of a new family of multidomain Rab5 exchange factors, has been shown to play an important role in the endocytosis of the epidermal growth factor receptor (EGFR). Herein, we examined the role of Rin1 in the down-regulation of EGFR following EGF stimulation. We observed that overexpression of Rin1 accelerates EGFR degradation in EGF-stimulated cells. In concordance, depletion of endogenous Rin1 by RNA interference resulted in a substantial reduction of EGFR degradation. We showed that Rin1 interacts with signal-transducing adaptor molecule 2 (STAM2), a protein that associates with hepatocyte growth factor-regulated substrate and plays a key role in the endosomal sorting machinery. Green fluorescent protein (GFP)-Rin1 co-localizes with hemagglutinin (HA)-STAM2 and with endogenous hepatocyte growth factor-regulated substrate. Furthermore, wild type STAM2, but not a deletion mutant lacking the SH3 domain, co-immunoprecipitates with endogenous Rin1. This interaction is dependent on the proline-rich domain (PRD) of Rin1 as Rin1DeltaPRD, a mutant lacking the PRD, does not interact with STAM2. Moreover, EGFR degradation was not accelerated by expression of the Rin1DeltaPRD mutant. Together these results suggest that Rin1 regulates EGFR degradation in cooperation with STAM, defining a novel role for Rin1 in regulating endosomal trafficking.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Endosomes/metabolism , ErbB Receptors/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Processing, Post-Translational/physiology , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence/genetics , Animals , COS Cells , Chlorocebus aethiops , Endosomal Sorting Complexes Required for Transport , Endosomes/genetics , ErbB Receptors/genetics , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Structure, Tertiary/genetics , Protein Transport/genetics , Sequence Deletion
18.
J Biol Chem ; 278(34): 32027-36, 2003 Aug 22.
Article in English | MEDLINE | ID: mdl-12783862

ABSTRACT

Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.


Subject(s)
Carrier Proteins/metabolism , Endocytosis/physiology , ErbB Receptors/metabolism , Intracellular Signaling Peptides and Proteins , Animals , Base Sequence , Carrier Proteins/chemistry , Carrier Proteins/physiology , Cell Line , Cricetinae , Cytoplasm/metabolism , DNA Primers , Humans , Microscopy, Fluorescence , Protein Binding , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...