Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37896645

ABSTRACT

Population health monitoring based on the Internet of Medical Things (IoMT) is becoming an important application trend healthcare improvement. This work aims to develop an autonomous network architecture, collecting sensor data with a cluster topology, forwarding information through relay nodes, and applying edge computing and transmission scheduling for network scalability and operational efficiency. The proposed distributed network architecture incorporates data compression technologies and effective scheduling algorithms for handling the transmission scheduling of various physiological signals. Compared to existing scheduling mechanisms, the experimental results depict the network performance and show that in analyzing the delay and jitter, the proposed WFQ-based algorithms have reduced the delay and jitter ratio by about 40% and 19.47% compared to LLQ with priority queueing scheme, respectively. The experimental results also demonstrate that the proposed network topology is more effective than the direct path transmission approach in terms of energy consumption, which suggests that the proposed network architecture may improve the development of medical applications with body area networks such that the goal of self-organizing population health monitoring can be achieved.

2.
Clin Epigenetics ; 14(1): 131, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36266728

ABSTRACT

BACKGROUND: Epigenetics exerts a vital role in the onset and development of renal cell carcinoma (RCC). Mounting evidence has shed light on the significance of human immune system in response to tumor infiltrating T cells. Hereby, we sought to unmask the immunomodulatory role of histone deacetylase 3 (HDAC3) and its potential upstream molecule, programmed cell death 5 (PDCD5) in RCC. METHODS: RCC and adjacent non-cancerous tissues were clinically resected from 58 patients, in which the expression profile of microRNA-195-5p (miR-195-5p), PDCD5, HDAC3, and serum glucocorticoid-inducible kinase 1 (SGK1) was determined by RT-qPCR and Western blot analysis. Their relations were investigated by a series of luciferase assays in combination with ChIP and co-IP. RCC cells (A498) were intervened using gain- and loss-of-function approaches, followed by cell proliferation evaluation. After co-culture with CD3+ T cells, flow cytometry and interferon-γ (IFN-γ) determination were performed. A xenograft tumor mouse model was developed for in vivo validation. RESULTS: PDCD5 was downregulated in RCC tissues and A498 cells. Upregulation of HDAC3, as well as of SGK1, resulted in suppression of A498 cell proliferation and promotion of T cell activation as evidenced by higher IFN-γ expression. Re-expression of PDCD5 downregulated HDAC3, causing a subsequent upregulation of miR-195-5p, while miR-195-5p could inversely modulate its target gene, SGK1. The regulatory mechanism appeared to be functional in vivo. CONCLUSION: Our results highlight the possible manipulation by PDCD5 on RCC cell proliferation and T cell activation, which provides new clues to better understand the immune balance in RCC progression.


Subject(s)
Apoptosis Regulatory Proteins , Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Neoplasm Proteins , Animals , Humans , Mice , Apoptosis Regulatory Proteins/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , DNA Methylation , Interferon-gamma/genetics , Kidney Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/genetics , T-Lymphocytes/metabolism
3.
Front Oncol ; 11: 628821, 2021.
Article in English | MEDLINE | ID: mdl-33842334

ABSTRACT

Cancer associated fibroblasts (CAFs) play crucial roles in cancer development, however, the specific mechanisms of CAFs associated renal cancer progression remain poorly understood. Our study observed enriched CAFs in high degree malignant tumor tissues from renal cancer patients. These CAFs isolated from tumor tissues are prone to facilitate drugs resistance and promote tumor progression in vitro and in vivo. Mechanistically, CAFs up-regulated tryptophan 2, 3-dioxygenase (TDO) expression, resulting in enhanced secretion of kynurenine (Kyn). Kyn produced from CAFs could up-regulated the expression of aromatic hydrocarbon receptor (AhR), eventually resulting in the AKT and STAT3 signaling pathways activation. Inhibition of AKT signal prevented cancer cells proliferation, while inhibition of the STAT3 signal reverted drugs resistance and cancer migration induced by kynurenine. Application of AhR inhibitor DMF could efficiently suppress distant metastasis of renal cancer cells, and improve anticancer effects of sorafenib (Sor)/sunitinib (Sun), which described a promising therapeutic strategy for clinical renal cancer.

4.
RSC Adv ; 10(22): 13252-13259, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-35492096

ABSTRACT

We developed an efficient and environmentally friendly two-step tandem methodology for the synthesis of sugar-containing coumarin derivatives catalyzed by lipozyme TL IM from Thermomyces lanuginosus in continuous-flow microreactors. Compared to those observed for other methods, the salient features of this work including green reaction conditions, short residence time (50 min), and catalysts are more readily available and the biocatalysis reaction process is efficient and easy to control. This two-step tandem synthesis of coumarin derivatives using the continuous-flow technology is a proof of concept that opens the use of enzymatic microreactors in coumarin derivative biotransformations.

5.
Org Biomol Chem ; 17(4): 807-812, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30629063

ABSTRACT

A fast and green protocol for the Michael addition of imidazoles to acrylates catalyzed by Lipozyme TL IM from Thermomyces lanuginosus in a continuous flow microreactor was developed. In contrast with existing methods, this method is simple (35 min), uses mild reaction conditions (45 °C) and is environmentally friendly. This enzymatic Michael addition performed in continuous flow microreactors is an innovation that may open up the use of enzymatic microreactors in imidazole analogue biotransformations.

6.
IEEE Trans Image Process ; 19(7): 1706-19, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20236899

ABSTRACT

In this paper we propose to jointly segment and register objects of interest in layered images. Layered imaging refers to imageries taken from different perspectives and possibly by different sensors. Registration and segmentation are therefore the two main tasks which contribute to the bottom level, data alignment, of the multisensor data fusion hierarchical structures. Most exploitations of two layered images assumed that scanners are at very high altitudes and that only one transformation ties the two images. Our data are however taken at mid-range and therefore requires segmentation to assist us examining different object regions in a divide-and-conquer fashion. Our approach is a combination of multiphase active contour method with a joint segmentation-registration technique (which we called MPJSR) carried out in a local moving window prior to a global optimization. To further address layered video sequences and tracking objects in frames, we propose a simple adaptation of optical flow calculations along the active contours in a pair of layered image sequences. The experimental results show that the whole integrated algorithm is able to delineate the objects of interest, align them for a pair of layered frames and keep track of the objects over time.

7.
Int J Biomed Imaging ; 2009: 269525, 2009.
Article in English | MEDLINE | ID: mdl-19710938

ABSTRACT

We propose a constrained version of Mumford and Shah's (1989) segmentation model with an information-theoretic point of view in order to devise a systematic procedure to segment brain magnetic resonance imaging (MRI) data for parametric T(1)-Map and T(1)-weighted images, in both 2-D and 3D settings. Incorporation of a tuning weight in particular adds a probabilistic flavor to our segmentation method, and makes the 3-tissue segmentation possible. Moreover, we proposed a novel method to jointly segment the T(1)-Map and calibrate RF Inhomogeneity (JSRIC). This method assumes the average T(1) value of white matter is the same across transverse slices in the central brain region, and JSRIC is able to rectify the flip angles to generate calibrated T(1)-Maps. In order to generate an accurate T(1)-Map, the determination of optimal flip-angles and the registration of flip-angle images are examined. Our JSRIC method is validated on two human subjects in the 2D T(1)-Map modality and our segmentation method is validated by two public databases, BrainWeb and IBSR, of T(1)-weighted modality in the 3D setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...