Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 189(1): 1, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34855022

ABSTRACT

Mo5N6 nanosheets were synthesized by a nickel-induced growth method and were found to possess peroxidase-like activity in acidic condition and catalase-like activity in weak basic condition. In acidic condition, Mo5N6 nanosheets can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to form a blue color product (TMBOX). At the co-existence of 4-aminophenol (4-AP), 4-AP can react with H2O2 and TMBOX, resulting in the decrease of TMBOX and the fading of blue color. Therefore, a facile, sensitive colorimetric method for the quantitative detection of 4-AP was developed. The linear range for 4-AP was 1.0 to 80.0 µmol⋅L‒1 (R2 = 0.999), and the detection limit was 0.56 µmol⋅L‒1 based on 3σ/k. Resorcinol, aniline, humic acid, and common ions and anions in surface water did not interfere the determination of 4-AP. This colorimetric method was applied to measure the 4-AP in real water sample from Wulong River in Fujian Province of China. The relative standard deviation for the determination of 4-AP was ranged from 0.03 to 1.88%, and the recoveries from spiked samples were ranged between 99.2 and 107.6%. The determination results were consistent with those obtained by HPLC.


Subject(s)
Aminophenols/analysis , Colorimetry/methods , Nanostructures/chemistry , Water Pollutants/analysis , Aminophenols/chemistry , Benzidines/chemistry , Catalysis , Chromogenic Compounds/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Oxidation-Reduction , Rivers/chemistry , Water Pollutants/chemistry
2.
ISME J ; 14(5): 1290-1303, 2020 05.
Article in English | MEDLINE | ID: mdl-32055028

ABSTRACT

Dominant coral-associated Endozoicomonas bacteria species are hypothesized to play a role in the coral sulfur cycle by metabolizing dimethylsulfoniopropionate (DMSP) into dimethylsulfide (DMS); however, no sequenced genome to date harbors genes for this process. In this study, we assembled high-quality (>95% complete) draft genomes of strains of the recently added species Endozoicomonas acroporae (Acr-14T, Acr-1, and Acr-5) isolated from the coral Acropora sp. and performed a comparative genomic analysis on the genus Endozoicomonas. We identified DMSP CoA-transferase/lyase-a dddD gene homolog in all sequenced genomes of E. acroporae strains-and functionally characterized bacteria capable of metabolizing DMSP into DMS via the DddD cleavage pathway using RT-qPCR and gas chromatography (GC). Furthermore, we demonstrated that E. acroporae strains can use DMSP as a carbon source and have genes arranged in an operon-like manner to link DMSP metabolism to the central carbon cycle. This study confirms the role of Endozoicomonas in the coral sulfur cycle.


Subject(s)
Anthozoa/microbiology , Gammaproteobacteria/metabolism , Sulfonium Compounds/metabolism , Animals , Bacteria/genetics , Carbon-Sulfur Lyases , Gammaproteobacteria/genetics , Genomics , Sulfides , Sulfur/metabolism
3.
Mikrochim Acta ; 187(1): 66, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31853697

ABSTRACT

Manganese(II)-doped zinc sulfide nanocrystals (Mn:ZnS NCs) with dual-emission fluorescence (peaks at 445 nm and 590 nm under 330 nm excitation), good water stability and low toxicity were synthesized by hot injection. The fluorescence intensity of both emission bands of the nanocrystals can change rapidly by the content of gaseous and dissolved oxygen. The process is fully reversible. Compared with the maximum intensity of Mn:ZnS sensing film in 100% nitrogen, the emission of the blue emission decreases by 72% in the presence of 100% oxygen, and the yellow emission by 32%. Response is linear in the presence of 3% to 12% of oxygen percentage in gas. For water-dissolved oxygen, the linear response occurs between 0.54 and 11.4 mg·L-1. Graphical abstractMn-doped ZnS NCs with dual-emission fluorescence were synthesized by hot-injection method. The reversible and rapid sensing characteristics of Mn-doped ZnS NCs to oxygen were studied, and the possible sensing mechanism was investigated.

4.
Inorg Chem ; 38(5): 951-956, 1999 Mar 08.
Article in English | MEDLINE | ID: mdl-11670867

ABSTRACT

Step-scan Fourier transform infrared absorption difference time-resolved (S(2)FTIR DeltaA TRS) and time-resolved resonance Raman (TR(3)) spectroscopies have been applied to a series of questions related to excited-state structure in the metal-to-ligand charge transfer (MLCT) excited states of [Ru(bpy)(2)(4,4'-(CO(2)Et)(2)bpy)](2+), [Ru(bpy)(2)(4-CO(2)Et-4'-CH(3)bpy)](2+), [Ru(bpy)(4,4'-(CO(2)Et)(2)bpy)(2)](2+), [Ru(4,4'-(CO(2)Et)(2)bpy)(3)](2+), [Ru(bpy)(2)(4,4'-(CONEt(2))(2)bpy)](2+), [Ru(bpy)(2)(4-CONEt(2)-4'-CH(3)bpy)](2+), and [Ru(4-CONEt(2)-4'-CH(3)bpy)(3)](2+) (bpy is 2,2'-bipyridine). These complexes contain bpy ligands which are either symmetrically or unsymmetrically derivatized with electron-withdrawing ester or amide substituents. Analysis of the vibrational data, largely based on the magnitudes of the nu(CO) shifts of the amide and ester substituents (Deltanu(CO)), reveals that the ester- or amide-derivatized ligands are the ultimate acceptors and that the excited electron is localized on one acceptor ligand on the nanosecond time scale. In the unsymmetrically substituted acceptor ligands, the excited electron is largely polarized toward the ester- or amide-derivatized pyridine rings. In the MLCT excited states of [Ru(bpy)(2)(4,4'-(CO(2)Et)(2)bpy)](2+) and [Ru(bpy)(2)(4,4'-(CONEt(2))(2)bpy)](2+), Deltanu(CO) is only 60-70% of that observed upon complete ligand reduction due to a strong polarization interaction in the excited state between the dpi(5) Ru(III) core and the excited electron.

5.
Chem Rev ; 98(4): 1439-1478, 1998 Jun 18.
Article in English | MEDLINE | ID: mdl-11848939
7.
Inorg Chem ; 35(19): 5520-5524, 1996 Sep 11.
Article in English | MEDLINE | ID: mdl-11666740

ABSTRACT

Classical theories of electron transfer are modified to take into account the differences between electron transfer in a rigid medium and in a fluid. Intramolecular vibrations and part of the dielectric polarization are assumed to remain dynamic in rigid media while the remaining part of the polarization, arising from dipole reorientations, is frozen. In rigid media, electron transfer occurs with the solvent locked into the dipole orientations of the initial state. This causes an increase in the free energy change and a decrease in the solvent reorganizational energy. It also increases the activation free energy for electron transfer. For photoinduced electron transfer, the analysis is more complex because multiple states are involved. The activation free energy can either be greater or less than in a fluid depending on charge distributions before and after electron transfer. The same analysis can be applied to interconversion between excited states in rigid media.

SELECTION OF CITATIONS
SEARCH DETAIL
...