Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 456
Filter
1.
Int J Biol Sci ; 20(12): 4750-4766, 2024.
Article in English | MEDLINE | ID: mdl-39309428

ABSTRACT

Patients with non-small cell lung cancer (NSCLC) are easily resistant to first-line chemotherapy with paclitaxel (PTX) or carboplatin (CBP). N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) has crucial functions in m6A modification and tumorigenesis. However, its role in chemoresistance of NSCLC is still elusive. Here, we demonstrated that METTL3 inhibitor STM2457 significantly reduced the IC50 values of PTX or CBP in NSCLC cells, and they showed a synergistic effect. Comparing with monotherapy, a combination of STM2457 and PTX or CBP exhibited more potent in vitro and in vivo anti-tumor efficacy. In addition, we found that ATP binding cassette subfamily C member 2 (ABCC2) was responsively elevated in cytomembrane after PTX or CBP treatment, and targeting METTL3 could reverse this effect. Mechanistically, targeting METTL3 decreased the m6A modification of ABCC2 mRNA and accelerated its mRNA degradation. Further studies revealed that YTHDF1 could bind and stabilize the m6A-modified mRNA of ABCC2, while YTHDF1 knockdown promoted it mRNA degradation. These results, taken together, demonstrate that targeting METTL3 enhances the sensitivity of NSCLC cells to PTX or CBP by decreasing the cytomembrane-localized ABCC2 in an m6A-YTHDF1-dependent manner, and suggest that METTL3 may be a potential therapeutic target for acquired resistance to PTX or CBP in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Methyltransferases , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins , RNA-Binding Proteins , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Multidrug Resistance-Associated Protein 2/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Mice , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Mice, Nude , Carboplatin/pharmacology , Carboplatin/therapeutic use , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology
2.
Small ; : e2404605, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248680

ABSTRACT

Artificial ion diodes, inspired by biological ion channels, have made significant contributions to the fields of physics, chemistry, and biology. However, constructing asymmetric sub-nanofluidic membranes that simultaneously meet the requirements of easy fabrication, high ion transport efficiency, and tunable ion transport remains a challenge. Here, a direct and flexible in situ staged host-guest self-assembly strategy is employed to fabricate ion diode membranes capable of achieving zonal regulation. Coupling the interfacial polymerization process with a host-guest assembly strategy, it is possible to easily manipulate the type, order, thickness, and charge density of each module by introducing two oppositely charged modules in stages. This method enables the tuning of ion transport behavior over a wide range salinity, as well as responsive to varying pH levels. To verify the potential of controllable diode membranes for application, two ion diode membranes with different ion selectivity and high charge density are coupled in a reverse electrodialysis device. This resulted in an output power density of 63.7 W m-2 at 50-fold NaCl concentration gradient, which is 12 times higher than commercial standards. This approach shows potential for expanding the variety of materials that are appropriate for microelectronic power generation devices, desalination, and biosensing.

3.
Adv Sci (Weinh) ; : e2404150, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269274

ABSTRACT

Positively charged nanofiltration membranes have attracted much attention in the field of lithium extraction from salt lakes due to their excellent ability to separate mono- and multi-valent cations. However, the thicker selective layer and the lower affinity for Li+ result in lower separation efficiency of the membranes. Here, PEI-P membranes with highly efficient Li+/Mg2+ separation performance are prepared by introducing highly lithophilic 4,7,10-Trioxygen-1,13-tridecanediamine (DCA) on the surface of PEI-TMC membranes using a post-modification method. Characterization and experimental results show that the utilization of the DCA-TMC crosslinked structure as a space-confined layer to inhibit the diffusion of the monomer not only increases the positive charge density of the membrane but also reduces its thickness by ≈35% and presents a unique coffee-ring structure, which ensures excellent water permeability and rejection of Mg2+. The ion-dipole interaction of the ether chains with Li+ facilitates Li+ transport and improves the Li+/Mg2+ selectivity (SLi,Mg = 23.3). In a three-stage nanofiltration process for treating simulated salt lake water, the PEI-P membrane can reduce the Mg2+/Li+ ratio of the salt lake by 400-fold and produce Li2CO3 with a purity of more than 99.5%, demonstrating its potential application in lithium extraction from salt lakes.

4.
Int J Biol Macromol ; 277(Pt 3): 134517, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111497

ABSTRACT

Fucoidan-coated pH sensitive liposomes were designed for targeted delivery of gemcitabine (FU-GEM PSL) to treat pancreatic cancer (PC). FU-GEM PSL had a particle size of 175.3 ± 4.9 nm, zeta potential of -19.0 ± 3.7 mV, encapsulation efficiency (EE) of 74.05 ± 0.17 %, and drug loading (DL) of 21.27 ± 0.05 %. Cell experiments in vitro showed that FU-GEM PSL could increase the release of GEM and drug concentration, and could inhibit tumor cell proliferation by affecting the cell cycle. FU-GEM PSL entered cells through macropinocytosis and caveolin-mediated endocytosis to exert effects. Meanwhile, the expression of P-selectin was detected in human tissues, demonstrating the feasibility of targeting FU. Moreover, combined with animal experiments in vivo, FU-GEM PSL could inhibit the development of PC. Furthermore, anti-tumor experiments in vivo carried on BALB/c mice indicated that FU-GEM PSL had tumor suppression abilities and safety. Therefore, FU-GEM PSL is a promising formulation for PC therapy.


Subject(s)
Cell Proliferation , Deoxycytidine , Gemcitabine , Liposomes , Pancreatic Neoplasms , Polysaccharides , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/chemistry , Deoxycytidine/administration & dosage , Animals , Polysaccharides/chemistry , Polysaccharides/pharmacology , Liposomes/chemistry , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , Mice, Inbred BALB C , Drug Liberation , Xenograft Model Antitumor Assays , Drug Delivery Systems , Endocytosis/drug effects
5.
Clin Kidney J ; 17(8): sfae204, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099565

ABSTRACT

Background: Diabetic nephropathy (DN) and diabetic retinopathy (DR) are common microvascular complications of diabetes. The purpose of this study was to investigate the correlation between retinal vascular geometric parameters and pathologically diagnosed type 2 DN and to determine the capacity of retinal vascular geometric parameters in differentiating DN from non-diabetic renal disease (NDRD). Methods: The study participants were adult patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease who underwent a renal biopsy. Univariate and multivariable regression analyses were performed to evaluate associations between retinal vessel geometry parameters and pathologically diagnosed DN. Multivariate binary logistic regression analyses were performed to establish a differential diagnostic model for DN. Results: In total, 403 patients were examined in this cross-sectional study, including 152 (37.7%) with DN, 157 (39.0%) with NDRD and 94 (23.3%) with DN combined with NDRD. After univariate logistic regression, total vessel fractal dimension, arteriolar fractal dimension and venular fractal dimension were all found to be associated with DN. In multivariate analyses adjusting for age, sex, blood pressure, diabetes, DR and other factors, smaller retinal vascular fractal dimensions were significantly associated with DN (P < .05). We developed a differential diagnostic model for DN combining traditional clinical indicators and retinal vascular geometric parameters. The area under the curve of the model established by multivariate logistic regression was 0.930. Conclusions: Retinal vessel fractal dimension is of great significance for the rapid and non-invasive differentiation of DN. Incorporating retinal vessel fractal dimension into the diagnostic model for DN and NDRD can improve the diagnostic efficiency.

6.
JACS Au ; 4(8): 3217-3227, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39211604

ABSTRACT

Ibuzatrelvir (1) was recently disclosed and patented by Pfizer for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has received fast-track status from the USA Food and Drug Administration (FDA) and has entered phase III clinical trials as a possible replacement for Paxlovid. Like nirmatrelvir (2) in Paxlovid, this orally active drug candidate is designed to target viral main proteases (Mpro) through reversible covalent interaction of its nitrile warhead with the active site thiol of the chymotrypsin-like cysteine protease (3CL protease). Inhibition of Mpro hinders the processing of the proteins essential for viral replication in vivo. However, ibuzatrelvir apparently does not require ritonavir (3), which is coadministered in Paxlovid to block human oxidative metabolism of nirmatrelvir. Here, we report the crystal structure of the complex of ibuzatrelvir with the active site of SARS-CoV-2 Mpro at 2.0 Šresolution. In addition, we show that ibuzatrelvir also potently inhibits the Mpro of Middle East respiratory syndrome-related coronavirus (MERS-CoV), which is fortunately not widespread but can be dangerously lethal (∼36% mortality). Co-crystal structures show that the binding mode of the drug to both active sites is similar and that the trifluoromethyl group of the inhibitor fits precisely into a critical S2 substrate binding pocket of the main proteases. However, our results also provide a rationale for the differences in potency of ibuzatrelvir for these two proteases due to minor differences in the substrate preferences leading to a weaker H-bond network in MERS-CoV Mpro. In addition, we examined the reversibility of compound binding to both proteases, which is an important parameter in reducing off-target effects as well as the potential immunogenicity. The crystal structures of the ibuzatrelvir complexes with Mpro of SARS-CoV-2 and of MERS-CoV will further assist drug design for coronaviral infections in humans and animals.

7.
J Vet Med Sci ; 86(9): 1032-1039, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39010245

ABSTRACT

Feline parvovirus (FPV) or feline panleukopenia virus is a highly contagious, life-threatening infectious virus in cats. Although FPV vaccination is routinely practiced in China, clinical diseases continue to occur. The investigation of genotypes and viral evolution can contribute to the prevention, diagnosis, and treatment of FPV. Therefore, this study aimed to provide an up-to-date understanding of the epidemiological, genotypic, and phylogenetic characteristics of FPV. In total, 152 rectal swabs were collected from diseased cats. All swab samples were tested for FPV using molecular methods. Amplification of the complete viral protein 2 (VP2) gene was performed for further analysis and to infer the genotypic and evolutionary characteristics of FPV. Of the 152 samples, FPV DNA was detected in 17 (17/152, 11.18%). Cats with FPV showed variable clinical signs such as dehydration, anorexia, fever, vomiting, and blood-stained diarrhea. Furthermore, VP2 sequences were identified in 17 PCR-positive cats, confirming the presence of FPV. Phylogenetic and nucleotide pairwise identity analyses revealed high genetic similarity among FPV sequences (99.6-100%) and clustered them into the FPV-G1 group. Amino acid analysis indicated a novel mutation (Ala91Ser) in all VP2 gene sequences amplified in this study. Our study provides baseline epidemiological data for the better prevention of FPV with respect to vaccination strategies. Genotypic and phylogenetic analyses confirm that FPV-G1 was the predominant FPV group in infected cats in Kunshan. Therefore, a rigorous countrywide investigation of the genotypic and evolutionary characteristics of FPV is warranted.


Subject(s)
Feline Panleukopenia Virus , Feline Panleukopenia , Genotype , Phylogeny , Animals , Cats , Feline Panleukopenia Virus/genetics , Feline Panleukopenia Virus/isolation & purification , China/epidemiology , Feline Panleukopenia/epidemiology , Feline Panleukopenia/virology , DNA, Viral/genetics , Cat Diseases/virology , Cat Diseases/epidemiology , Female , Parvoviridae Infections/veterinary , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Male
8.
Materials (Basel) ; 17(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39063791

ABSTRACT

Nickel-based superalloys have been widely used in the aerospace industry, and regulating the reinforcing phases is the key to improving the high-temperature strength of the alloy. In this study, a series of aging treatments (650 °C, 750 °C, 850 °C and 950 °C for 8 h) were designed to study different thermal deformation behaviors and microstructure evolutions for a novel nickel-based superalloy. Among the aged samples, the 950 °C aged sample achieved the peak stress of ~323 MPa during the thermal deformation and the highest microhardness of ~315 HV after thermal compression, which were the greatest differences compared to before deformation. In addition, the grains of the 950 °C sample exhibit deformed fibrous shapes, and the grain orientation is isotropic, while the other samples exhibited isotropy. In the 850 °C and 950 °C high-temperature aging samples, the γ' precipitate (about 20 nm in size) is gradually precipitated, which inhibits the movement of dislocation in the grain during compression, thus inhibiting the occurrence of dynamic recrystallization and improving the high-temperature mechanical properties of the alloy.

9.
Bioorg Med Chem ; 110: 117825, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38954918

ABSTRACT

To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.


Subject(s)
RNA, Small Interfering , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Humans , Molecular Structure , RNA Interference
10.
Stud Health Technol Inform ; 315: 723-724, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049399

ABSTRACT

This study was conducted to develop nursing skills learning support system, particularly addressing a "blood drawing technique," among other nursing skills. It analyzes tacit knowledge associated with skilled nurses' (hereinafter "experts"') movements when executing a blood drawing technique, devoting attention to their gaze. Overall, positive correlation was found between the ladder level and the success rate.


Subject(s)
Clinical Competence , Humans , Fixation, Ocular/physiology
11.
Mol Neurobiol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886327

ABSTRACT

To validate that treadmill exercise promotes neurofunctional recovery post ischemic stroke and to specifically explore the role of the CX3CL1/CX3CR1 signaling pathway in this treadmill-mediated recovery process. C57BL/6 J mice were used to establish a middle cerebral artery occlusion (MCAO) model. From days 5 to 28 post-stroke, the experimental group did 10-min treadmill sessions twice daily at 12 r/min; the control group remained inactive. On day 6 post-stroke, mice received three intraperitoneal injections of Bromodeoxyuridine (BrdU) or PBS. On days 1, 3, and 5 post-stroke, mice received intracerebroventricular injections of exogenous recombinant CX3CL1, CX3CL1 antagonist, or PBS. The modified neurological severity score (mNSS) and the corner test were used to assess sensorimotor function, and the morris water maze (MWM) test was employed to evaluate cognitive function. Western blot detected CX3CL1 and CX3CR1 protein expression, while immunofluorescence observed these proteins, neurogenesis in the subventricular zone (SVZ), rostral migratory stream (RMS), and dentate gyrus (DG), along with Iba1 and CD68 co-expression. ELISA quantified IL-1ß, IL-4, and IL-10 levels. Treadmill exercise significantly improved neurofunctional recovery in MCAO mice, enhanced neurogenesis in the RMS and SVZ, and increased the expression of CX3CL1 and CX3CR1. The CX3CL1/CX3CR1 axis enhanced the impact of treadmill exercise on neurofunctional recovery, promoting neurogenesis in the RMS and SVZ, and reducing inflammation. Additionally, this axis also enhanced neurogenesis and suppressed microglial activation in the DG induced by treadmill exercise. This study demonstrates the CX3CL1/CX3CR1 pathway as critical for treadmill-induced post-stroke recovery, indicating its potential target for exercise mimetics in rehabilitation.

13.
Proc Natl Acad Sci U S A ; 121(25): e2314314121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865262

ABSTRACT

Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.


Subject(s)
Apicoplasts , Pyruvic Acid , Toxoplasma , Apicoplasts/metabolism , Toxoplasma/metabolism , Pyruvic Acid/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Animals , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Biological Transport , Metabolic Networks and Pathways
14.
Biodegradation ; 35(5): 565-582, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844743

ABSTRACT

A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).


Subject(s)
Autotrophic Processes , Bioreactors , Denitrification , Oxidation-Reduction , Bioreactors/microbiology , Sulfur/metabolism , Sewage/microbiology , Nitrates/metabolism , Anaerobiosis , Bacteria/metabolism , Nitrites/metabolism , Ammonium Compounds/metabolism , Waste Disposal, Fluid/methods
15.
Cell Mol Immunol ; 21(8): 826-841, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871810

ABSTRACT

Managing renal fibrosis is challenging owing to the complex cell signaling redundancy in diseased kidneys. Renal fibrosis involves an immune response dominated by macrophages, which activates myofibroblasts in fibrotic niches. However, macrophages exhibit high heterogeneity, hindering their potential as therapeutic cell targets. Herein, we aimed to eliminate specific macrophage subsets that drive the profibrotic immune response in the kidney both temporally and spatially. We identified the major profibrotic macrophage subset (Fn1+Spp1+Arg1+) in the kidney and then constructed a 12-mer glycopeptide that was designated as bioactivated in vivo assembly PK (BIVA-PK) to deplete these cells. BIVA-PK specifically binds to and is internalized by profibrotic macrophages. By inducing macrophage cell death, BIVA-PK reshaped the renal microenvironment and suppressed profibrotic immune responses. The robust efficacy of BIVA-PK in ameliorating renal fibrosis and preserving kidney function highlights the value of targeting macrophage subsets as a potential therapy for patients with CKD.


Subject(s)
Fibrosis , Kidney , Macrophages , Animals , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Kidney/pathology , Kidney/drug effects , Mice , Mice, Inbred C57BL , Peptides/pharmacology , Peptides/metabolism , Male , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Humans
16.
PLoS Pathog ; 20(6): e1012355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935808

ABSTRACT

Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Stress Granules , Viral Nonstructural Proteins , Virus Replication , Zika Virus Infection , Zika Virus , Zika Virus/physiology , Virus Replication/physiology , Humans , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Protein Phosphatase 1/metabolism , Eukaryotic Initiation Factor-2/metabolism , Stress Granules/metabolism , Animals
17.
Front Oncol ; 14: 1375737, 2024.
Article in English | MEDLINE | ID: mdl-38835381

ABSTRACT

Background: Acute promyelocytic leukemia (APL) is rarely caused by the PLZF::RARα fusion gene. While APL patients with PLZF::RARα fusion commonly exhibit diverse hematologic symptoms, the presentation of myeloid sarcoma (MS) as an initial manifestation is infrequent. Case presentation: A 61-year-old patient was referred to our hospital with 6-month history of low back pain and difficulty walking. Before this admission, spine magnetic resonance imaging (MRI) conducted at another hospital revealed multiple abnormal signals in the left iliac bone and vertebral bodies spanning the thoracic (T11-T12), lumbar (L1-L4), and sacral (S1/S3) regions. This led to a provisional diagnosis of bone tumors with an unknown cause. On admission, complete blood count (CBC) test and peripheral blood smear revealed a slightly increased counts of monocytes. Immunohistochemical staining of both spinal and bone marrow (BM) biopsy revealed positive expression for CD117, myeloperoxidase (MPO), and lysozyme. BM aspirate showed a significant elevation in the percentage of promyelocytes (21%), which were morphologically characterized by round nuclei and hypergranular cytoplasm. Multiparameter flow cytometry of BM aspirate revealed that blasts were positive for CD13, CD33, CD117, and MPO. Through the integrated application of chromosome analysis, fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), and Sanger sequencing, it was determined that the patient possessed a normal karyotype and a rare cryptic PLZF::RARα fusion gene, confirming the diagnosis of APL. Conclusion: In the present study, we report the clinical features and outcome of a rare APL patient characterized by a cryptic PLZF::RARα fusion and spinal myeloid sarcoma (MS) as the initial presenting symptom. Our study not only offers valuable insights into the heterogeneity of APL clinical manifestations but also emphasizes the crucial need to promptly consider the potential link between APL and MS for ensuring a timely diagnosis and personalized treatments.

18.
Clin Interv Aging ; 19: 911-922, 2024.
Article in English | MEDLINE | ID: mdl-38799377

ABSTRACT

Purpose: The International IgA Nephropathy Prediction Tool (IIgAN-PT) can predict the risk of End-stage renal disease (ESRD) or estimated glomerular filtration rate (eGFR) decline ≥ 50% for adult IgAN patients. Considering the differential progression between older adult and adult patients, this study aims to externally validate its performance in the older adult cohort. Patients and Methods: We analyzed 165 IgAN patients aged 60 and above from six medical centers, categorizing them by their predicted risk. The primary outcome was a ≥50% reduction in estimated glomerular filtration rate (eGFR) or kidney failure. Evaluation of both models involved concordance statistics (C-statistics), time-dependent receiver operating characteristic (ROC) curves, Kaplan-Meier survival curves, and calibration plots. Comparative reclassification was conducted using net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Results: The study included 165 Chinese patients (median age 64, 60% male), with a median follow-up of 5.1 years. Of these, 21% reached the primary outcome. Both models with or without race demonstrated good discrimination (C-statistics 0.788 and 0.790, respectively). Survival curves for risk groups were well-separated. The full model without race more accurately predicted 5-year risks, whereas the full model with race tended to overestimate risks after 3 years. No significant reclassification improvement was noted in the full model without race (NRI 0.09, 95% CI: -0.27 to 0.34; IDI 0.003, 95% CI: -0.009 to 0.019). Conclusion: : Both models exhibited excellent discrimination among older adult IgAN patients. The full model without race demonstrated superior calibration in predicting the 5-year risk.


Subject(s)
Glomerular Filtration Rate , Glomerulonephritis, IGA , Kidney Failure, Chronic , Humans , Male , Female , Middle Aged , Aged , Risk Assessment/methods , ROC Curve , Disease Progression , Kaplan-Meier Estimate , Risk Factors , China
19.
Angew Chem Int Ed Engl ; 63(31): e202402880, 2024 07 29.
Article in English | MEDLINE | ID: mdl-38758629

ABSTRACT

Lysine-specific peptide and protein modification strategies are widely used to study charge-related functions and applications. However, these strategies often result in the loss of the positive charge on lysine, significantly impacting the charge-related properties of proteins. Herein, we report a strategy to preserve the positive charge and selectively convert amines in lysine side chains to amidines using nitriles and hydroxylamine under aqueous conditions. Various unprotected peptides and proteins were successfully modified with a high conversion rate. Moreover, the reactive amidine moiety and derived modification site enable subsequent secondary modifications. Notably, positive charges were retained during the modification. Therefore, positive charge-related protein properties, such as liquid-liquid phase separation behaviour of α-synuclein, were not affected. This strategy was subsequently applied to a lysine rich protein to develop an amidine-containing coacervate DNA complex with outstanding mechanical properties. Overall, our innovative strategy provides a new avenue to explore the characteristics of positively charged proteins.


Subject(s)
Hydroxylamine , Lysine , Lysine/chemistry , Hydroxylamine/chemistry , Proteins/chemistry , Amidines/chemistry , alpha-Synuclein/chemistry , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL