Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 441
Filter
1.
Biodegradation ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844743

ABSTRACT

A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).

2.
Front Oncol ; 14: 1375737, 2024.
Article in English | MEDLINE | ID: mdl-38835381

ABSTRACT

Background: Acute promyelocytic leukemia (APL) is rarely caused by the PLZF::RARα fusion gene. While APL patients with PLZF::RARα fusion commonly exhibit diverse hematologic symptoms, the presentation of myeloid sarcoma (MS) as an initial manifestation is infrequent. Case presentation: A 61-year-old patient was referred to our hospital with 6-month history of low back pain and difficulty walking. Before this admission, spine magnetic resonance imaging (MRI) conducted at another hospital revealed multiple abnormal signals in the left iliac bone and vertebral bodies spanning the thoracic (T11-T12), lumbar (L1-L4), and sacral (S1/S3) regions. This led to a provisional diagnosis of bone tumors with an unknown cause. On admission, complete blood count (CBC) test and peripheral blood smear revealed a slightly increased counts of monocytes. Immunohistochemical staining of both spinal and bone marrow (BM) biopsy revealed positive expression for CD117, myeloperoxidase (MPO), and lysozyme. BM aspirate showed a significant elevation in the percentage of promyelocytes (21%), which were morphologically characterized by round nuclei and hypergranular cytoplasm. Multiparameter flow cytometry of BM aspirate revealed that blasts were positive for CD13, CD33, CD117, and MPO. Through the integrated application of chromosome analysis, fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), and Sanger sequencing, it was determined that the patient possessed a normal karyotype and a rare cryptic PLZF::RARα fusion gene, confirming the diagnosis of APL. Conclusion: In the present study, we report the clinical features and outcome of a rare APL patient characterized by a cryptic PLZF::RARα fusion and spinal myeloid sarcoma (MS) as the initial presenting symptom. Our study not only offers valuable insights into the heterogeneity of APL clinical manifestations but also emphasizes the crucial need to promptly consider the potential link between APL and MS for ensuring a timely diagnosis and personalized treatments.

4.
Angew Chem Int Ed Engl ; : e202402880, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758629

ABSTRACT

Lysine-specific peptide and protein modification strategies are widely used to study charge-related functions and applications. However, these strategies often result in the loss of the positive charge on lysine, significantly impacting the charge-related properties of proteins. Herein, we report a strategy to preserve the positive charge and selectively convert amines in lysine side chains to amidines using nitriles and hydroxylamine under aqueous conditions. Various unprotected peptides and proteins were successfully modified with a high conversion rate. Moreover, the reactive amidine moiety and derived modification site enable subsequent secondary modifications. Notably, positive charges were retained during the modification. Therefore, positive charge-related protein properties, such as liquid‒liquid phase separation behaviour of α-synuclein, were not affected. This strategy was subsequently applied to a lysine rich protein to develop an amidine-containing coacervate DNA complex with outstanding mechanical properties. Overall, our innovative strategy provides a new avenue to explore the characteristics of positively charged proteins.

5.
RSC Adv ; 14(25): 17461-17466, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38818366

ABSTRACT

GalNAc-conjugated siRNA has shown remarkable potential in liver-targeted delivery in recent years. In general, tetrahydroxymethylmethane or other branching clusters constitute the basis of GalNAc's structure, which yields trivalent or tetravalent ligands. A novel diamine-scaffold GalNAc conjugate was synthesized and evaluated for its efficiency in siRNA administration. It exhibits comparable siRNA delivery effectiveness to a GalNAc NAG37 phase II clinical drug candidate targeting ANGPTL3. In addition, it exhibits more powerful silencing activity when connected to the 3'-end of the sense strand with an additional PS-linkage instead of a PO linkage between the ligand and the oligomer compared to a GalNAc L96 standard targeting TTR. Taken together, the incorporation of a diamine-scaffold into the GalNAc conjugate structure has potential in the field of gene therapy.

6.
Cell Mol Life Sci ; 81(1): 238, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795180

ABSTRACT

BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.


Subject(s)
Drug Resistance, Neoplasm , Indoles , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Sulfonamides , Thyroid Neoplasms , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Humans , Animals , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Indoles/pharmacology , Mice , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Sulfonamides/pharmacology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Sorafenib/pharmacology , Quinolines/pharmacology , Mutation , Antigens/metabolism , Proteoglycans/metabolism , Membrane Proteins , Chondroitin Sulfate Proteoglycans
7.
Clin Interv Aging ; 19: 911-922, 2024.
Article in English | MEDLINE | ID: mdl-38799377

ABSTRACT

Purpose: The International IgA Nephropathy Prediction Tool (IIgAN-PT) can predict the risk of End-stage renal disease (ESRD) or estimated glomerular filtration rate (eGFR) decline ≥ 50% for adult IgAN patients. Considering the differential progression between older adult and adult patients, this study aims to externally validate its performance in the older adult cohort. Patients and Methods: We analyzed 165 IgAN patients aged 60 and above from six medical centers, categorizing them by their predicted risk. The primary outcome was a ≥50% reduction in estimated glomerular filtration rate (eGFR) or kidney failure. Evaluation of both models involved concordance statistics (C-statistics), time-dependent receiver operating characteristic (ROC) curves, Kaplan-Meier survival curves, and calibration plots. Comparative reclassification was conducted using net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Results: The study included 165 Chinese patients (median age 64, 60% male), with a median follow-up of 5.1 years. Of these, 21% reached the primary outcome. Both models with or without race demonstrated good discrimination (C-statistics 0.788 and 0.790, respectively). Survival curves for risk groups were well-separated. The full model without race more accurately predicted 5-year risks, whereas the full model with race tended to overestimate risks after 3 years. No significant reclassification improvement was noted in the full model without race (NRI 0.09, 95% CI: -0.27 to 0.34; IDI 0.003, 95% CI: -0.009 to 0.019). Conclusion: : Both models exhibited excellent discrimination among older adult IgAN patients. The full model without race demonstrated superior calibration in predicting the 5-year risk.


Subject(s)
Glomerular Filtration Rate , Glomerulonephritis, IGA , Kidney Failure, Chronic , Humans , Male , Female , Middle Aged , Aged , Risk Assessment/methods , ROC Curve , Disease Progression , Kaplan-Meier Estimate , Risk Factors , China
8.
Endocrine ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564084

ABSTRACT

PURPOSE: The role of dual-specificity phosphatase-5 (DUSP5) in BRAF-mutant thyroid cancers remains unclear. The aims of this study are to investigate the role of DUSP5 in BRAF-mutant thyroid cancer cells, explore its value in the diagnosis and evaluate therapeutic potential of targeting DUSP5 combined with sorafenib for BRAF-mutant thyroid cancer patients. METHODS: The role of DUSP5 in thyroid cancer cells was determined by a series of in vitro and in vivo experiments. Underlying mechanisms were explored by western blotting analysis. The diagnostic value of combination detection of DUSP5 expression and BRAFV600E mutation was evaluated using ROC curve. RESULTS: Knocking down DUSP5 in BRAF-mutant thyroid cancer cells significantly inhibited colony formation, cell migration and invasion, meanwhile, induced cell cycle arrest and cell apoptosis. Moreover, inhibition of DUSP5 improved the anti-tumor efficacy of sorafenib both in vitro and in vivo. Besides, combination detection of DUSP5 expression and BRAFV600E mutation showed much more accuracy in preoperative diagnosis of thyroid cancer. CONCLUSIONS: Our data demonstrate an oncogenic role of DUSP5 in BRAF-mutant thyroid cancer cells, and combined analysis of its expression and BRAFV600E mutation can accurately diagnose thyroid cancer. In addition, inhibition of DUSP5 improves the response of BRAF-mutant thyroid cancer cells to sorafenib.

10.
Anal Chem ; 96(16): 6321-6328, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38595097

ABSTRACT

Small extracellular vesicles (sEVs) are heterogeneous biological nanoparticles (NPs) with wide biomedicine applications. Tracking individual nanoscale sEVs can reveal information that conventional microscopic methods may lack, especially in cellular microenvironments. This usually requires biolabeling to identify single sEVs. Here, we developed a light scattering imaging method based on dark-field technology for label-free nanoparticle diffusion analysis (NDA). Compared with nanoparticle tracking analysis (NTA), our method was shown to determine the diffusion probabilities of a single NP. It was demonstrated that accurate size determination of NPs of 41 and 120 nm in diameter is achieved by purified Brownian motion (pBM), without or within the cell microenvironments. Our pBM method was also shown to obtain a consistent size estimation of the normal and cancerous plasma-derived sEVs without and within cell microenvironments, while cancerous plasma-derived sEVs are statistically smaller than normal ones. Moreover, we showed that the velocity and diffusion coefficient are key parameters for determining the diffusion types of the NPs and sEVs in a cancerous cell microenvironment. Our light scattering-based NDA and pBM methods can be used for size determination of NPs, even in cell microenvironments, and also provide a tool that may be used to analyze sEVs for many biomedical applications.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/chemistry , Humans , Light , Nanoparticles/chemistry , Scattering, Radiation , Cellular Microenvironment , Particle Size , Diffusion , Tumor Microenvironment , Cell Line, Tumor , Motion
11.
Org Lett ; 26(15): 2939-2944, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38602425

ABSTRACT

A selective three-component 1,2-sulfonyl etherification of aryl 1,3-dienes enabled by copper catalysis to afford biologically interesting alkenyl 1,2-sulfone ether derivatives through C-S and C-O bond formation is described. The protocol proceeds with the sulfonyl chloride and alcohols under simple, mild, and base-free conditions, providing a straightforward route to sulfonylated allyl ether compounds with broad functional group tolerance and excellent chemo- and regioselectivity. Mechanistic studies indicate that the selective alkene difunctionalization includes a key copper-mediated single-electron transfer process.

12.
BMC Cancer ; 24(1): 385, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532312

ABSTRACT

Gliomas are the most common primary intracranial tumor worldwide. The maintenance of telomeres serves as an important biomarker of some subtypes of glioma. In order to investigate the biological role of RTEL1 in glioma. Relative telomere length (RTL) and RTEL1 mRNA was explored and regression analysis was performed to further examine the relationship of the RTL and the expression of RTEL1 with clinicopathological characteristics of glioma patients. We observed that high expression of RTEL1 is positively correlated with telomere length in glioma tissue, and serve as a poor prognostic factor in TERT wild-type patients. Further in vitro studies demonstrate that RTEL1 promoted proliferation, formation, migration and invasion ability of glioma cells. In addition, in vivo studies also revealed the oncogene role of RTEL1 in glioma. Further study using RNA sequence and phospho-specific antibody microarray assays identified JNK/ELK1 signaling was up-regulated by RTEL1 in glioma cells through ROS. In conclusion, our results suggested that RTEL1 promotes glioma tumorigenesis through JNK/ELK1 cascade and indicate that RTEL1 may be a prognostic biomarker in gliomas.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/pathology , Brain Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Oncogenes , Biomarkers , Cell Proliferation , ets-Domain Protein Elk-1/genetics , DNA Helicases/genetics
13.
Biomed Rep ; 20(5): 75, 2024 May.
Article in English | MEDLINE | ID: mdl-38544959

ABSTRACT

The present study investigated the inhibitory and neuroprotective effects of Rubia yunnanensis alcohol extract (RY-A) on oxidative stress induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 cells. In vitro cultured HT22 cells were randomly divided into control, OGD/R, OGD/R + 100 µmol/l edaravone and OGD/R + 10, 20 and 40 µg/ml RY-A groups. Oxygen-sugar deprivation was performed with 10 mmol/l sodium dithionite combined with sugar-free DMEM medium for 2 h, followed by re-glycolization and reoxygenation for 2 h to establish an in vitro OGD/R model. Cell morphology was observed under a phase contrast microscope. Cell survival rate was detected by thiazolyl blue and lactate dehydrogenase and oxidative stress-related indexes were detected by commercial kits. The effects and metabolic alterations of RY-A treatment after OGD/R were evaluated using ultra-high performance liquid chromatography and mass spectrometry. Protein levels were further examined by western blotting. The results showed that cells in the OGD/R group were swollen and lacked protrusions, had significantly reduced viability and had significantly elevated oxidative stress-related indexes of reactive oxygen species, nitric oxide levels and malondialdehyde content and significantly reduced activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, compared with controls. Compared with the OGD/R group, the RY-A group had significantly improved cell morphology and significantly increased cell viability and in terms of oxidative stress, exhibited significantly reduced reactive oxygen species, nitric oxide levels and malondialdehyde content, as well as significantly increased superoxide dismutase and glutathione peroxidase activities. Metabolomic analysis identified changes in 20 metabolites, including L-tryptophan, ornithine, eicosapentaenoic acid-d5, isosafrole and xanthine. Metabolomics analysis showed that the pathways affected included those related to phenylalanine, tyrosine and tryptophan biosynthesis, the prolactin signaling pathway and amphetamine addiction. These results suggested that RY-A had significant preventive effects on an in vitro model of cerebral ischemia-reperfusion injury simulated by OGD/R and the mechanism may be related to increased tryptophan content, activation of indoleamine 2,3-dioxygenase enzymes and inhibition of oxidative stress.

14.
Horm Metab Res ; 56(5): 368-372, 2024 May.
Article in English | MEDLINE | ID: mdl-38447949

ABSTRACT

The aim of the study was to investigate the iodine intake in the resident population in Xi'an and analyze the relationship between iodine nutritional status and the prevalence of subclinical hypothyroidism and thyroid nodules (TNs). A total of 2507 people were enrolled in Xi'an. Venous serum thyroid stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TgAb), urinary iodine concentration (UIC), and thyroid ultrasonography were collected. Patients with abnormal TSH were checked for free thyroxine (FT4) and triiodothyronine (FT3). Adults in Xi'an had median UICs of 220.80 µg/L and 178.56 µg/l, respectively. A sum of 16.78% of people had subclinical hypothyroidism. Both iodine excess and iodine deficit increased the frequency of subclinical hypothyroidism. The lowest was around 15.09% in females with urine iodine levels between 200 and 299 µg/l. With a rate of 10.69%, the lowest prevalence range for males was 100-199 µg/l. In Xi'an, 11.37% of people have TNs. In comparison to other UIC categories, TN occurrences were higher in females (18.5%) and males (12%) when UIC were below 100 µg/l. In conclusion, iodine intake was sufficient in the Xi'an area, while the adults' UIC remains slightly higher than the criteria. Iodine excess or deficiency can lead to an increase in the prevalence of subclinical hypothyroidism. Patients with iodine deficiency are more likely to develop TNs.


Subject(s)
Hypothyroidism , Iodine , Thyroid Nodule , Humans , Iodine/urine , Iodine/blood , Female , Male , Thyroid Nodule/epidemiology , Thyroid Nodule/urine , Thyroid Nodule/blood , Hypothyroidism/epidemiology , Hypothyroidism/urine , Hypothyroidism/blood , Prevalence , Adult , Middle Aged , Aged
15.
Biomed Pharmacother ; 174: 116446, 2024 May.
Article in English | MEDLINE | ID: mdl-38513599

ABSTRACT

Herein, we constructed innovative reduction-sensitive and targeted gelatin-based micelles for doxorubicin (DOX) delivery in tumor therapy. AS1411 aptamer-modified gelatin-ss-tocopherol succinate (AGSST) and the control GSST without AS1411 modification were synthesized and characterized. Antitumor drug DOX-containing AGSST (AGSST-D) and GSST-D nanoparticles were prepared, and their shapes were almost spherical. Reduction-responsive characteristics of DOX release in vitro were revealed in AGSST-D and GSST-D. Compared with non-targeted GSST-D, AGSST-D demonstrated better intracellular uptake and stronger cytotoxicity against nucleolin-overexpressed A549 cells. Importantly, AGSST-D micelles showed more effective killing activity in A549-bearing mice than GSST-D and DOX⋅HCl. It was revealed that AGSST-D micelles had no obvious systemic toxicity. Overall, AGSST micelles would have the potential to be an effective drug carrier for targeted tumor therapy.


Subject(s)
Aptamers, Nucleotide , Doxorubicin , Drug Delivery Systems , Gelatin , Micelles , Oligodeoxyribonucleotides , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Humans , Aptamers, Nucleotide/pharmacology , Gelatin/chemistry , A549 Cells , Drug Delivery Systems/methods , Mice , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/pharmacology , Mice, Nude , Mice, Inbred BALB C , Drug Carriers/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Xenograft Model Antitumor Assays , Drug Liberation , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism
16.
Int J Biol Macromol ; 265(Pt 1): 130709, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462120

ABSTRACT

Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.


Subject(s)
Nanoparticles , Photochemotherapy , Porphyrins , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Chondroitin Sulfates , Triple Negative Breast Neoplasms/drug therapy , Doxorubicin/pharmacology , Doxorubicin/chemistry , Nanoparticles/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry
17.
Pharmacol Res ; 202: 107113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387744

ABSTRACT

Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.


Subject(s)
Anti-Inflammatory Agents , Sepsis , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Inflammation/complications , Docosahexaenoic Acids/therapeutic use , Docosahexaenoic Acids/pharmacology , Eicosanoids , Inflammation Mediators , Sepsis/drug therapy , Sepsis/complications
18.
Angew Chem Int Ed Engl ; 63(15): e202400459, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38317310

ABSTRACT

We realized the microenvironment-differential Imaging of demethylated metabolites of methionine and the regional regulation of ferroptosis.


Subject(s)
Ferroptosis , Methionine , Fluorescence , Racemethionine , Diagnostic Imaging , Tumor Microenvironment
19.
J Autoimmun ; 144: 103176, 2024 04.
Article in English | MEDLINE | ID: mdl-38364575

ABSTRACT

Psoriasis, a chronic inflammatory skin condition, is often accompanied by psychiatric comorbidities such as anxiety, depression, suicidal ideation, and other mental disorders. Psychological disorders may also play a role in the development and progression of psoriasis. The intricate interplay between the skin diseases and the psychiatric comorbidities is mediated by the 'skin-brain axis'. Understanding the mechanisms underlying psoriasis and psychiatric comorbidities can help improve the efficacy of treatment by breaking the vicious cycle of diseases. T cells and related cytokines play a key role in the pathogenesis of psoriasis and psychiatric diseases, and are crucial components of the 'skin-brain axis'. Apart from damaging the blood-brain barrier (BBB) directly, T cells and secreted cytokines could interact with the hypothalamic-pituitary-adrenal axis (HPA axis) and the sympathetic nervous system (SNS) to exacerbate skin diseases or mental disorders. However, few reviews have systematically summarized the roles and mechanisms of T cells in the interaction between psoriasis and psychiatric comorbidities. In this review, we discussed several key T cells and their roles in the 'skin-brain axis', with a focus on the mechanisms underlying the interplay between psoriasis and mental commodities, to provide data that might help develop effective strategies for the treatment of both psoriasis and psychiatric comorbidities.


Subject(s)
Hypothalamo-Hypophyseal System , Psoriasis , Humans , T-Lymphocytes , Pituitary-Adrenal System , Psoriasis/epidemiology , Cytokines
20.
Front Endocrinol (Lausanne) ; 15: 1292412, 2024.
Article in English | MEDLINE | ID: mdl-38344659

ABSTRACT

Context: Diabetic retinopathy (DR) and diabetic nephropathy (DN), are major microvascular complications of diabetes. DR is an important predictor of DN, but the relationship between the severity of DR and the pathological severity of diabetic glomerulopathy remains unclear. Objective: To investigate the relationship between severity of diabetic retinopathy (DR) and histological changes and clinical indicators of diabetic nephropathy (DN) in patients with type 2 diabetes mellitus (T2DM). Methods: Patients with T2DM (n=272) who underwent a renal biopsy were eligible. Severity of DR was classified as non-diabetic retinopathy, non-proliferative retinopathy, and proliferative retinopathy (PDR). Relationship between DN and DR and the diagnostic efficacy of DR for DN were explored. Results: DN had a higher prevalence of DR (86.4%) and DR was more severe. The sensitivity and specificity of DR in DN were 86.4% and 78.8%, while PDR was 26.4% and 98.5%, respectively. In DN patients, the severity of glomerular lesions (p=0.001) and prevalence of KW nodules (p<0.001) significantly increased with increasing severity of DR. The presence of KW nodules, lower hemoglobin levels, and younger age were independent risk factors associated with more severe DR in patients with DN. Conclusion: DR was a good predictor of DN. In DN patients, the severity of DR was associated with glomerular injury, and presence of KW nodules, lower hemoglobin levels and younger age were independent risk factors associated with more severe DR. Trial registration: ClinicalTrails.gov, NCT03865914.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diabetic Retinopathy , Humans , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/etiology , Diabetes Mellitus, Type 2/complications , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/etiology , Diabetic Retinopathy/diagnosis , Risk Factors , Hemoglobins
SELECTION OF CITATIONS
SEARCH DETAIL
...