Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Adv Sci (Weinh) ; 11(22): e2400444, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552156

ABSTRACT

Aortic root aneurysm is a potentially life-threatening condition that may lead to aortic rupture and is often associated with genetic syndromes, such as Marfan syndrome (MFS). Although studies with MFS animal models have provided valuable insights into the pathogenesis of aortic root aneurysms, this understanding of the transcriptomic and epigenomic landscape in human aortic root tissue remains incomplete. This knowledge gap has impeded the development of effective targeted therapies. Here, this study performs the first integrative analysis of single-nucleus multiomic (gene expression and chromatin accessibility) and spatial transcriptomic sequencing data of human aortic root tissue under healthy and MFS conditions. Cell-type-specific transcriptomic and cis-regulatory profiles in the human aortic root are identified. Regulatory and spatial dynamics during phenotypic modulation of vascular smooth muscle cells (VSMCs), the cardinal cell type, are delineated. Moreover, candidate key regulators driving the phenotypic modulation of VSMC, such as FOXN3, TEAD1, BACH2, and BACH1, are identified. In vitro experiments demonstrate that FOXN3 functions as a novel key regulator for maintaining the contractile phenotype of human aortic VSMCs through targeting ACTA2. These findings provide novel insights into the regulatory and spatial dynamics during phenotypic modulation in the aneurysmal aortic root of humans.


Subject(s)
Phenotype , Humans , Aortic Aneurysm/genetics , Aortic Aneurysm/metabolism , Muscle, Smooth, Vascular/metabolism , Marfan Syndrome/genetics , Marfan Syndrome/metabolism , Myocytes, Smooth Muscle/metabolism , Transcriptome/genetics , Aorta/metabolism , Gene Expression Profiling/methods
2.
HGG Adv ; 5(1): 100258, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38006208

ABSTRACT

Ebstein's anomaly, a rare congenital heart disease, is distinguished by the failure of embryological delamination of the tricuspid valve leaflets from the underlying primitive right ventricle myocardium. Gaining insight into the genetic basis of Ebstein's anomaly allows a more precise definition of its pathogenesis. In this study, two distinct cohorts from the Chinese Han population were included: a case-control cohort consisting of 82 unrelated cases and 125 controls without cardiac phenotypes and a trio cohort comprising 36 parent-offspring trios. Whole-exome sequencing data from all 315 participants were utilized to identify qualifying variants, encompassing rare (minor allele frequency < 0.1% from East Asians in the gnomAD database) functional variants and high-confidence (HC) loss-of-function (LoF) variants. Various statistical models, including burden tests and variance-component models, were employed to identify rare variants, genes, and biological pathways associated with Ebstein's anomaly. Significant associations were noted between Ebstein's anomaly and rare HC LoF variants found in genes related to the matrisome, a collection of extracellular matrix (ECM) components. Specifically, 47 genes with HC LoF variants were exclusively or predominantly identified in cases, while nine genes showed such variants in the probands. Over half of unrelated cases (n = 42) and approximately one-third of probands (n = 12) were found to carry one or two LoF variants in these prioritized genes. These results highlight the role of the matrisome in the pathogenesis of Ebstein's anomaly, contributing to a better understanding of the genetic architecture underlying this condition. Our findings hold the potential to impact the genetic diagnosis and treatment approaches for Ebstein's anomaly.


Subject(s)
Ebstein Anomaly , Heart Defects, Congenital , Humans , Ebstein Anomaly/genetics , Tricuspid Valve/pathology , Heart Defects, Congenital/complications , Myocardium/pathology , Heart Ventricles/pathology
3.
HGG Adv ; 4(4): 100227, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37635785

ABSTRACT

Ebstein's anomaly is a rare congenital heart disease characterized by tricuspid valve downward displacement and is associated with additional cardiac phenotypes such as left ventricle non-compaction. The genetic basis of Ebstein's anomaly has yet to be fully elucidated, although several genes (e.g., NKX2-5, MYH7, TPM1, and FLNA) may contribute to Ebstein's anomaly. Here, in two Ebstein's anomaly families (a three-generation family and a trio), we identified independent heterozygous nonsense variants in laminin subunit 3 α (LAMA3), cosegregated with phenotypes in families with reduced penetrance. Furthermore, knocking out Lama3 in mice revealed that haploinsufficiency of Lama3 led to Ebstein's malformation of the tricuspid valve and an abnormal basement membrane structure. In conclusion, we identified a novel gene-disease association of LAMA3 implicated in Ebstein's anomaly, and the findings extended our understanding of the role of the extracellular matrix in Ebstein's anomaly etiology.


Subject(s)
Ebstein Anomaly , Laminin , Animals , Mice , Ebstein Anomaly/genetics , Extracellular Matrix , Extracellular Matrix Proteins , Laminin/genetics , Tricuspid Valve
4.
J Thorac Cardiovasc Surg ; 166(6): 1594-1603.e5, 2023 12.
Article in English | MEDLINE | ID: mdl-36517271

ABSTRACT

OBJECTIVES: Thoracic aortic aneurysm and dissection has a genetic predisposition and a variety of clinical manifestations. This study aimed to investigate the clinical and molecular characterizations of patients with thoracic aortic aneurysm and dissection and further explore the relationship between the genotype and phenotype, as well as their postoperative outcomes. METHODS: A total of 1095 individuals with thoracic aortic aneurysm and dissection admitted to our hospital between 2013 and 2022 were included. Next-generation sequencing and multiplex ligation-dependent probe amplification were performed, and mosaicism analysis was additionally implemented to identify the genetic causes. RESULTS: A total of 376 causative variants were identified in 83.5% of patients with syndromic thoracic aortic aneurysm and dissection and 18.7% of patients with nonsyndromic thoracic aortic aneurysm and dissection, including 8 copy number variations and 2 mosaic variants. Patients in the "pathogenic" and "variant of uncertain significance" groups had younger ages of aortic events and higher aortic reintervention risks compared with genetically negative cases. In addition, patients with FBN1 haploinsufficiency variants had shorter reintervention-free survival than those with FBN1 dominant negative variants. CONCLUSIONS: Our data expanded the genetic spectrum of heritable thoracic aortic aneurysm and dissection and indicated that copy number variations and mosaic variants contributed to a small proportion of the disease-causing alterations. Moreover, positive genetic results might have a possible predictive value for aortic event severity and postoperative risk stratification.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Humans , Aortic Dissection/genetics , Aortic Dissection/surgery , DNA Copy Number Variations , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/surgery , Genetic Predisposition to Disease , Aorta
5.
Stem Cell Reports ; 17(12): 2674-2689, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36400028

ABSTRACT

Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension characterized by the preferential remodeling of the pulmonary venules. Hereditary PVOD is caused by biallelic variants of the EIF2AK4 gene. Three PVOD patients who carried the compound heterozygous variants of EIF2AK4 and two healthy controls were recruited and induced pluripotent stem cells (iPSCs) were generated from human peripheral blood mononuclear cells (PBMCs). The EIF2AK4 c.2965C>T variant (PVOD#1), c.3460A>T variant (PVOD#2), and c.4832_4833insAAAG variant (PVOD#3) were corrected by CRISPR-Cas9 in PVOD-iPSCs to generate isogenic controls and gene-corrected-iPSCs (GC-iPSCs). PVOD-iPSC-endothelial cells (ECs) exhibited a decrease in GCN2 protein and mRNA expression when compared with control and GC-ECs. PVOD-ECs exhibited an abnormal EC phenotype featured by excessive proliferation and angiogenesis. The abnormal phenotype of PVOD-ECs was normalized by protein kinase B inhibitors AZD5363 and MK2206. These findings help elucidate the underlying molecular mechanism of PVOD in humans and to identify promising therapeutic drugs for treating the disease.


Subject(s)
Induced Pluripotent Stem Cells , Pulmonary Veno-Occlusive Disease , Humans , Pulmonary Veno-Occlusive Disease/genetics , Pulmonary Veno-Occlusive Disease/therapy , Induced Pluripotent Stem Cells/metabolism , Endothelial Cells/metabolism , Leukocytes, Mononuclear/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism
6.
Genet Med ; 24(12): 2544-2554, 2022 12.
Article in English | MEDLINE | ID: mdl-36194209

ABSTRACT

PURPOSE: Early detection and pathogenicity interpretation of disease-associated variants are crucial but challenging in molecular diagnosis, especially for insidious and life-threatening diseases, such as heritable thoracic aortic aneurysm and dissection (HTAAD). In this study, we developed HTAADVar, an unbiased and fully automated system for the molecular diagnosis of HTAAD. METHODS: We developed HTAADVar (http://htaadvar.fwgenetics.org) under the American College of Medical Genetics and Genomics/Association for Molecular Pathology framework, with optimizations based on disease- and gene-specific knowledge, expert panel recommendations, and variant observations. HTAADVar provides variant interpretation with a self-built database through the web server and the stand-alone programs. RESULTS: We constructed an expert-reviewed database by integrating 4373 variants in HTAAD genes, with comprehensive metadata curated from 697 publications and an in-house study of 790 patients. We further developed an interpretation system to assess variants automatically. Notably, HTAADVar showed a multifold increase in performance compared with public tools, reaching a sensitivity of 92.64% and specificity of 70.83%. The molecular diagnostic yield of HTAADVar among 790 patients (42.03%) also matched the clinical data, independently demonstrating its good performance in clinical application. CONCLUSION: HTAADVar represents the first fully automated system for accurate variant interpretation for HTAAD. The framework of HTAADVar could also be generalized for the molecular diagnosis of other genetic diseases.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Humans , Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/genetics , Aortic Dissection/diagnosis , Aortic Dissection/genetics , Genomics , Pathology, Molecular , Genetic Testing , Genetic Variation/genetics
7.
Front Cardiovasc Med ; 9: 826861, 2022.
Article in English | MEDLINE | ID: mdl-35211530

ABSTRACT

AIMS: Thoracic aortic dissection (TAD) is a life-threatening disease with no effective drug therapy thus far. New therapeutic targets and indications for timely surgical intervention are urgently needed. Our aim is to investigate new pathological mechanisms and potential biomarkers of TAD through global metabolomic profiling of aortic aneurysm and dissection patients. METHODS AND RESULTS: We performed untargeted metabolomics to determine plasma metabolite concentrations in an aortic disease cohort, including 70 thoracic aortic aneurysm (TAA) and 70 TAD patients, as well as 70 healthy controls. Comparative analysis revealed that sphingolipid, especially its core metabolite C18-ceramide, was significantly distinguished in TAD patients but not in TAA patients, which was confirmed by subsequent quantitative analysis of C18-ceramide in a validation cohort. By analyzing our existing multiomics data in aortic tissue in a murine TAD model and TAD patients, we found that an enhanced ceramide de novo synthesis pathway in macrophages might contribute to the elevated ceramide. Inhibition of the ceramide de novo synthesis pathway by myriocin markedly alleviated BAPN-induced aortic inflammation and dissection in mice. In vitro studies demonstrated that exogenous C18-ceramide promoted macrophage inflammation and matrix metalloprotein (MMP) expression through the NLRP3-caspase 1 pathway. In contrast, inhibition of endogenous ceramide synthesis by myriocin attenuated lipopolysaccharide (LPS)-induced macrophage inflammation. CONCLUSIONS: Our findings demonstrated that ceramide metabolism disturbance might play a vital role in TAD development by aggravating aortic inflammation through the NLRP3 pathway, possibly providing a new target for pharmacological therapy and a potential biomarker of TAD.

8.
Cardiovasc Drugs Ther ; 36(1): 31-44, 2022 02.
Article in English | MEDLINE | ID: mdl-33432452

ABSTRACT

PURPOSE: P-selectin glycoprotein ligand-1 (PSGL-1) acts as a crucial regulator for the inflammatory cells infiltration by mediating the adhesion of leukocytes. However, the role of PSGL-1 in aortic aneurysm remains elusive. Here, we investigated the role of PSGL-1 in aortic aneurysm (AA) development. METHODS: We first detected PSGL-1 expression in samples from aortic aneurysm patients and mouse AA models via western blotting, immunofluorescence, and flow cytometry, and then we used global PSGL-1 knockout mice and their wild type controls to establish an aortic aneurysm model induced by deoxycorticosterone acetate (DOCA) plus high salt (HS). The incidence, fatality rates, and the pathological changes of aortic aneurysm were analyzed in each group. The inflammation, adhesion molecules expression, and PSGL-1 mediated leukocyte-endothelial adhesion and their underlying mechanisms were explored further. RESULTS: Increased PSGL-1 levels were observed in human and mouse aortic aneurysm, and on leukocytes of mice treated with DOCA+HS. PSGL-1 deficiency reduced the incidence and severity of aortic aneurysm significantly, as well as decreased elastin fragmentation, collagen accumulation, and smooth muscle cells degeneration. Mechanistically, the protective effect of PSGL-1 inhibition was mediated by the reduced adhesion molecules, and the subsequently reduced leukocyte-endothelial adhesion through the NF-κB pathway, which finally led to reduced inflammatory cells infiltration and decreased inflammatory factors expression. CONCLUSION: PSGL-1 deficiency is protective against inflammatory cells migration and recruitment in the condition of AA through attenuation of leukocyte-endothelial adhesion. Inhibition of PSGL-1 may be a potential therapeutic target for the prevention and treatment of human AA.


Subject(s)
Aortic Aneurysm/physiopathology , Inflammation/physiopathology , Membrane Glycoproteins/genetics , Animals , Aortic Aneurysm/genetics , Cell Adhesion/physiology , Cell Movement/physiology , Cells, Cultured , Desoxycorticosterone Acetate , Disease Models, Animal , Endothelial Cells/metabolism , Humans , Inflammation/genetics , Leukocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Patient Acuity , Sodium Chloride, Dietary
9.
Nat Cardiovasc Res ; 1(7): 665-678, 2022 Jul.
Article in English | MEDLINE | ID: mdl-39196237

ABSTRACT

Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by pulmonary vascular remodeling. Immunoglobulin E (IgE) is known to participate in aortic vascular remodeling, but whether IgE mediates pulmonary vascular disease is unknown. In the present study, we found serum IgE elevation in pulmonary arterial hypertension (PAH) patients, hypoxia-induced PH mice and monocrotaline-induced PH rats. Neutralizing IgE with an anti-IgE antibody was effective in preventing PH development in mice and rat models. The IgE receptor FcεRIα was also upregulated in PH lung tissues and Fcer1a deficiency prevented the development of PH. Single-cell RNA-sequencing revealed that FcεRIα was mostly expressed in mast cells (MCs) and MC-specific Fcer1a knockout protected against PH in mice. IgE-activated MCs produced interleukin (IL)-6 and IL-13, which subsequently promoted vascular muscularization. Clinically approved IgE antibody omalizumab alleviated the progression of established PH in rats. Using genetic and pharmacological approaches, we have demonstrated that blocking IgE-FcεRIα signaling may hold potential for PAH treatment.

10.
Orphanet J Rare Dis ; 16(1): 513, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34906192

ABSTRACT

BACKGROUND: Thoracic aortic aneurysm and dissection (TAAD) is a hidden-onset but life-threatening disorder with high clinical variability and genetic heterogeneity. In recent years, an increasing number of genes have been identified to be related to TAAD. However, some genes remain uncertain because of limited case reports and/or functional studies. LTBP3 was such an ambiguous gene that was previously known for dental and skeletal dysplasia and then noted to be associated with TAAD. More research on individuals or families harboring variants in this gene would be helpful to obtain full knowledge of the disease and clarify its association with TAAD. METHODS: A total of 266 TAAD probands with no causative mutations in known genes had been performed wholeexome sequencing (WES) to identify potentially pathogenic variants. In this study, rare LTBP3 variants were the focus of analysis. RESULTS: Two compound heterozygous mutations, c.625dup (p.Leu209fs) and c.1965del (p.Arg656fs), in LTBP3 were identified in a TAAD patient along with short stature and dental problems, which was the first TAAD case with biallelic LTBP3 null mutations in an Asian population. Additionally, several rare heterozygous LTBP3 variants were also detected in other sporadic TAAD patients. CONCLUSION: The identification of LTBP3 mutations in TAAD patients in our study provided more clinical evidence to support its association with TAAD, which broadens the gene spectrum of LTBP3. LTBP3 should be considered to be incorporated into the routine genetic analysis of heritable aortopathy, which might help to fully understand its phenotypic spectrum and improve the diagnostic rate of TAAD.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Aortic Dissection/diagnosis , Aortic Dissection/genetics , Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/genetics , Genetic Testing , Humans , Latent TGF-beta Binding Proteins/genetics , Mutation/genetics , Pedigree
11.
Article in English | MEDLINE | ID: mdl-33671883

ABSTRACT

This study investigated the distribution, pollution level and potential ecological risk of potentially toxic elements (PTEs) from manganese mining in a karstic Danshui River, in Changyang, Western Hubei, Central China. River water and sediments were collected for seven PTEs measurement (As, Cd, Cr, Cu, Mn, Pb and Zn), as well as pH and Eh of the river water were measured. Results showed that the major pollutant was Mn, the river water environment was mainly acidic and oxidizing (288 < Eh, pH < 6.3), and the pollution distribution of Mn in the study area was dominated by the combination of natural processes and anthropogenic activities. In the river water, according to the contamination factor (CF) and pollution load index (IPL) results, Mn was considered the main pollutant. There was low As and Pb pollution downstream as well as Cu pollution upstream. Upstream and downstream areas were the main polluted river sections of the river water samples collected. In river sediments, based on the results of the geo-accumulation index (Igeo) and potential ecological risk index (IPER), it was determined that there was only considerable Mn pollution. The IPER of the PTEs from the river sediments was at acceptable levels, only Mn upstream performed at a moderate ecological risk level. According to Pearson correlation and principal component analysis, Mn originated from manganese mining activities, Cd, Cr and Zn were of natural origin, and Cu may have come from both mining and natural origin, whereas Pb and As were mainly related to the daily activities. Consequently, elemental speciation, mining activities and the distribution of water conservancy facilities were the main impacts of PET pollution distribution in this river.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments , Manganese/toxicity , Metals, Heavy/analysis , Mining , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
12.
Gland Surg ; 9(2): 558-574, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32420291

ABSTRACT

BACKGROUND: Secondary lymphedema is a common condition that affects patients with malignant tumors. Conservative treatments fail to provide lasting relief because they do not address the underlying pathological accumulation of excessive fat. Our aim is to clarify the molecular mechanisms of abnormal adipogenic differentiation in lymphedema adipose tissue. METHODS: We compared the proliferation and adipogenesis potential of adipose-derived mesenchymal stem cells (ASCs) from the lymphedema adipose tissue from liposuction specimens of 10 patients with extremity lymphedema with that of ASCs from adipose tissue from the normal upper abdomen of the same patients. Transcriptome analysis were performed to identify the differences between the two kinds of ASCs. Cyclin-dependent kinase 1 (CDK1) inhibitors were used to treat the abnormal ASCs in lymphedema adipose tissue. RESULTS: Our results demonstrate that significant functional and transcriptomic differences exist between the two kinds of ASCs. Up-regulated genes were mainly involved in cell proliferation and division while down-regulated genes were mainly associated with immune responses and inflammatory as well as osteogenic and myogenic differentiation. Furthermore, we find that the excessive proliferation and adipogenesis of ASCs from lymphedema adipose tissue returned to the normal phenotype by CDK1 inhibitors. ASCs from lymphedema adipose tissues have higher immunosuppressive effect and the cytokines related to immunosuppressive was significantly up-regulated. CONCLUSIONS: In conclusion, lymphedema-associated ASCs had more rapid proliferation and a higher adipogenic differentiation capacity. CDK1 may be a key driver of proliferation and adipogenic differentiation in these cells, which might expound the accumulation of adipose tissue extensively observed in secondary lymphedema. ASCs from lymphedema adipose tissues showed immunomodulation dysfunction and immunomodulation may play an important role in the pathogenesis of lymphedema.

13.
BMC Pulm Med ; 20(1): 150, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32471403

ABSTRACT

BACKGROUND: Variants in the gene encoding bone morphogenetic protein receptor type II (BMPR2) are the most common genetic cause of pulmonary arterial hypertension (PAH), whereas biallelic variants in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary haemangiomatosis (PVOD/PCH). Racial background may influence the clinical characteristics of patients diagnosed with PAH or PVOD/PCH. Here, we compared the clinical characteristics and survival between patients with BMPR2 variants or EIF2AK4 variants in a Chinese population. METHODS: Heterozygous variants in BMPR2 and homozygous or compound heterozygous biallelic EIF2AK4 variants predicted to be deleterious were identified as potentially causal. Clinical and radiological data were collected and analysed. The primary outcomes were death or lung transplantation. Hazard ratios (HRs) for death or transplantation associated with the presence of BMPR2 or biallelic EIF2AK4 variants were calculated using Cox proportional hazards models to analyse patient survival. RESULTS: Two hundred thirty-two patients with PAH were enrolled for genetic testing, and PAH patients with associated conditions were excluded from the study. Forty-five patients with BMPR2 variants and 11 patients with biallelic EIF2AK4 variants were recruited. PAH patients with BMPR2 or biallelic EIF2AK4 variants presented symptoms at the ages of 25.57 ± 10.17 years and 31.6 ± 9.38 years, respectively. The whole group of patients showed female dominance either with BMPR2 variants or biallelic EIF2AK4 variants. Specific radiological abnormalities are more prominent in EIF2AK4 variant carriers but can also be found in some patients with BMPR2 variants. Biallelic EIF2AK4 variant carriers had worse survival than BMPR2 variant carriers (p < 0.0001). CONCLUSIONS: Clinical pictures of PAH patients with BMPR2 and biallelic EIF2AK4 variants in the Chinese population differ from other populations by a younger age at diagnosis and demonstrate female dominance in the whole patient group. High-resolution chest CT can help assist in differentiating PAH with PVOD/PCH. BMPR2 variants and biallelic EIF2AK4 variants are associated with adverse outcomes, but the survival of patients with biallelic EIF2AK4 variants is dismal.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Mutation , Protein Serine-Threonine Kinases/genetics , Pulmonary Arterial Hypertension/genetics , Adolescent , Adult , China , Female , Genetic Predisposition to Disease , Genetic Testing , Humans , Male , Pulmonary Arterial Hypertension/diagnosis , Pulmonary Arterial Hypertension/physiopathology , Survival Analysis , Young Adult
14.
Orphanet J Rare Dis ; 15(1): 98, 2020 04 19.
Article in English | MEDLINE | ID: mdl-32306994

ABSTRACT

BACKGROUND: Reversible splenial lesion syndrome (RESLES) is a clinico-radiological syndrome characterized by the presence of reversible lesions specifically involving the splenium of the corpus callosum (SCC). The cause of RESLES is unknown. However, infectious-related mild encephalitis/encephalopathy (MERS) with a reversible splenial lesion remains the most common cause of reversible splenial lesions. Acute intermittent porphyria (AIP) is an autosomal dominant disorder caused by a partial deficiency of porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthetic pathway. It can affect the autonomic, peripheral, and central nervous system. RESULT: In this study, we report a 20-year-old woman with AIP who presented with MRI manifestations suggestive of RESLES, she had a novel HMBS nonsense mutation, a G to A mutation in base 594, which changed tryptophan to a stop codon (W198*). CONCLUSION: To the best of our knowledge, this is only one published case of RELES associated with AIP.


Subject(s)
Brain Diseases , Porphyria, Acute Intermittent , Adult , Corpus Callosum , Female , Humans , Hydroxymethylbilane Synthase/genetics , Mutation/genetics , Porphyria, Acute Intermittent/genetics , Young Adult
15.
Stem Cell Res Ther ; 10(1): 106, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30898155

ABSTRACT

BACKGROUND: Human adipose-derived stem cells (hADSCs) are an important source of cells for regenerative medicine. Evidence of extensive interactions with the surrounding microenvironment has led researchers to focus more on hADSCs as activating agents of regenerative pathways, rather than simply replacing damaged cells. Several studies have found that functional miRNAs can be packaged into exosomes and transferred from donor cells into recipient cells, indicating that transported miRNAs may be a new class of cell-to-cell regulatory species. The aim of the present study was to evaluate whether the exosome-derived miRNAs secreted by hADSCs are capable of influencing angiogenesis, a key step in tissue regeneration. METHODS: Exosomes were purified from hADSCs followed by the characterization of their phenotype and angiogenic potential in vitro. RNA sequencing was performed to detect the miRNAs that were enriched in the hADSC-derived exosomes. A miRNA-mimic experiment was used to detect the key miRNAs in the proangiogenic activity of hADSC-derived exosomes. RESULTS: Exosomes isolated from hADSCs were characterized as round membrane vesicles with a size of approximately 100 nm and were positive for CD9 and flotillin. The exosomes were internalized by primary human umbilical vein endothelial cells (HUVECs) and stimulated HUVEC proliferation and migration. Remarkably, the exosomes promoted vessel-like formation by HUVECs in a dose-dependent manner, and their maximum activity (10 µg/mL) was comparable with that of 5% FBS. The RNA-seq bioinformatics analysis predicted 1119 gene targets of the top 30 exosomal miRNAs in Gene Ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and the pathway involved in the angiogenesis was among the top KEGG pathways. Moreover, intact miR-423-5p was further demonstrated to be transferred into HUVECs via exosomes and to exert its angiogenic function by targeting Sufu. CONCLUSIONS: Exosomal miR-423-5p mediated the proangiogenic activity of hADSCs by targeting Sufu, which may contribute to the exploitation of exosomes from hADSCs as a therapeutic tool for regenerative medicine.


Subject(s)
Adipose Tissue/metabolism , Cell Proliferation , Exosomes/metabolism , MicroRNAs/metabolism , Neovascularization, Physiologic , Stem Cells/metabolism , Adipose Tissue/cytology , Human Umbilical Vein Endothelial Cells , Humans , Repressor Proteins/metabolism , Stem Cells/cytology
16.
BMJ Open ; 8(8): e021219, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30166295

ABSTRACT

OBJECTIVE: As a marker of in vivo thromboxane generation, high-level urinary thromboxane metabolites (TXA-M) increase the occurrence of cardiovascular events in high-risk patients. To investigate whether perioperative urinary TXA-M level is associated with major adverse cardiac and cerebrovascular events (MACCE) after coronary artery bypass graft (CABG) surgery, we designed a nested case-control study. DESIGN: Observational, nested case-control study. SETTING: Single-centre outcomes research in Fuwai Hospital, Beijing, China. PARTICIPANTS: One thousand six hundred and seventy Chinese patients undergoing CABG surgery from September 2011 to October 2013. METHODS: We obtained urinary samples from 1670 Chinese patients undergoing CABG 1 hour before surgery (pre-CABG), and 6 hours (post-CABG 6 hours) and 24 hours after surgery (post-CABG 24 hours). Patients were followed up for 1 year, and we observed 56 patients had MACCE. For each patient with MACCE, we matched three control subjects. Perioperative urinary TXA-M of the three time spots was detected in these 224 patients. RESULTS: Post-CABG 24 hours TXA-M is significantly higher than that of patients without MACCE (11 101vs8849 pg/mg creatine, P=0.007). In addition, patients in the intermediate tertile and upper tertile of post-CABG 24 hours urinary TXA-M have a 2.2 times higher (HR 2.22, 95% CI 1.04 to 4.71, P=0.038) and a 2.8 times higher (HR 2.81, 95% CI 1.35 to 5.85, P=0.006) risk of 1 year MACCE than those in the lower tertile, respectively. CONCLUSIONS: In conclusion, post-CABG 24 hours urinary TXA-M elevation is associated with an increase of 1 year adverse events after CABG, indicating that the induction of cyclo-oxygenase-2 by surgery-related inflammatory stimuli or platelet turnover may be responsible for the high levels of post-CABG urinary TXA-M. TRIAL REGISTRATION NUMBER: NCT01573143.


Subject(s)
Coronary Artery Bypass , Perioperative Period , Thromboxanes/urine , Cardiovascular Diseases/etiology , Case-Control Studies , Cerebrovascular Disorders/etiology , Coronary Artery Bypass/adverse effects , Female , Humans , Male , Middle Aged , Postoperative Complications/etiology , Postoperative Complications/urine , Risk Factors , Thromboxanes/metabolism
17.
Respir Res ; 19(1): 87, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743074

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a progressive and fatal disorder associated with high pulmonary artery pressure. Genetic testing enables early diagnosis and offers an opportunity for family screening. To identify genetic mutations and help make a precise diagnosis, we performed genetic testing in 191 probands with PAH and tried to analyze the genotype-phenotype correlation. METHODS: Initially, PAH samples (n = 119) were submitted to BMPR2 screening using Sanger sequencing. Later, we developed a PAH panel test to identify causal mutations in 13 genes related to PAH and tried to call BMPR2 copy number variations (CNVs) with the panel data. Multiplex ligation-dependent probe amplification (MLPA) was used to search for CNVs in BMPR2, ACVRL1 and ENG. Notably, EIF2AK4 gene was also involved in the panel, which allowed to distinguish pulmonary veno-occlusive disease (PVOD)/pulmonary capillary hemangiomatosis (PCH) patients from idiopathic PAH (IPAH). Characteristics of patients were compared using t test for continuous variables. RESULTS: Pathogenic BMPR2 mutations were detected most frequently in 32 (17.9%) IPAH and 5 (41.7%) heritable PAH (HPAH) patients by sequencing, and 12 BMPR2 CNVs called from the panel data were all successfully confirmed by MLPA analysis. In addition, homozygous or compound heterozygous EIF2AK4 mutations were identified in 6 patients, who should be corrected to a diagnosis of PVOD/PCH. Genotype-phenotype correlation analysis revealed that PAH patients with BMPR2 mutations were younger at diagnosis (27.2y vs. 31.6y, p = 0.0003) and exhibited more severe pulmonary hemodynamic impairment and a worse cardiac index compared with those without BMPR2 mutations. CONCLUSIONS: The panel assay represented a highly valuable tool in PAH genetic testing, not only for the detection of small sequence alterations, but also for an indication of BMPR2 CNVs, which had implications for the specific samples to perform further MLPA assay. Analyses of PAH causal genes have a great help to clinical diagnosis and deep implications in disease treatment.


Subject(s)
Asian People/genetics , Bone Morphogenetic Protein Receptors, Type II/genetics , Genetic Testing/methods , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/genetics , Mutation/genetics , Adolescent , Adult , Cohort Studies , Female , Humans , Hypertension, Pulmonary/epidemiology , Male , Young Adult
18.
Blood Cells Mol Dis ; 63: 21-24, 2017 03.
Article in English | MEDLINE | ID: mdl-28011390

ABSTRACT

Acute intermittent porphyria (AIP) is an autosomal dominant disorder caused by a partial deficiency of porphobilinogen deaminase (PBGD), the third enzyme in the of heme biosynthetic pathway. It can affect the autonomic, peripheral, and central nervous system. Posterior reversible encephalopathy syndrome is a clinicoradiological entity characterized by headache, seizures, altered consciousness, and visual disorder associated with potentially reversible neuroradiological abnormalities predominantly in the parieto-occipital lobes. Establishing accurate diagnoses of the patient and asymptomatic family members with AIP involves identifying the PBGD enzyme mutations directly. In this study, we report a 28-year-old woman with acute intermittent porphyria who presented with radiological manifestations suggestive of posterior reversible encephalopathy syndrome, she had a novel PBGD frame shift mutation, base 875 and 876 have been deleted resulting in glutamine to a stop codon (Gln292fs), in a Chinese family.


Subject(s)
Frameshift Mutation , Hydroxymethylbilane Synthase/genetics , Porphyria, Acute Intermittent/genetics , Adult , Asian People , Codon, Terminator , Diagnosis, Differential , Female , Humans , Magnetic Resonance Imaging , Porphyria, Acute Intermittent/diagnostic imaging , Posterior Leukoencephalopathy Syndrome/diagnosis , Posterior Leukoencephalopathy Syndrome/pathology
19.
Biomed Res Int ; 2016: 3927635, 2016.
Article in English | MEDLINE | ID: mdl-28025645

ABSTRACT

Porphyria is a group of eight metabolic disorders characterized by defects in heme biosynthesis. The presentation of porphyria is highly variable, and the symptoms are nonspecific, which accounts in part for delays in establishing a diagnosis. In this study, we report the characteristics of 36 Chinese acute porphyria patients. Most of them were female (33/36), and the median age was 25.3 years (range 18-45 years). The most frequent presenting symptom was abdominal pain (32/36). Hyponatremia was the most common electrolyte abnormality (29/36), and the serum sodium concentration was significantly negatively correlated with convulsion (p = 0.00). Genetic testing provided a precise diagnosis of the patients. Genetic analysis of the porphobilinogen deaminase (PBGD) gene was performed for 10 subjects. Of them, 9 were found to harbor a mutation in the PBGD gene, proving a diagnosis of acute intermittent porphyria, and, in 1 case, a novel Cys209Term mutation was found.


Subject(s)
Abdominal Pain , Hydroxymethylbilane Synthase/genetics , Hyponatremia , Mutation, Missense , Porphyrias , Abdominal Pain/genetics , Abdominal Pain/pathology , Abdominal Pain/physiopathology , Acute Disease , Adolescent , Adult , Amino Acid Substitution , Female , Humans , Hyponatremia/genetics , Hyponatremia/pathology , Hyponatremia/physiopathology , Male , Middle Aged , Porphyrias/diagnosis , Porphyrias/genetics , Porphyrias/pathology , Porphyrias/physiopathology , Tertiary Care Centers
20.
Thromb Res ; 148: 125-127, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27846449

ABSTRACT

Protein S is a vitamin K-dependent plasma glycoprotein that acts as an anticoagulant, and its deficiency usually predisposes individuals to venous thromboembolism. Hereditary protein S deficiency is an autosomal dominant disorder caused by a PROS1 mutation. Herein, we described a novel PROS1 frameshift mutation, c.74dupA, in a hereditary protein S deficiency family. Interestingly, both of the proband and his mother carried the mutation and had a protein S deficiency, however, only the proband suffered a pulmonary embolism while his mother had no history of any thrombosis, suggesting that a triggering event might have been involved in the thrombus formation. Therefore, genetic testing of PROS1 appeared important for the early diagnosis of hereditary protein S deficiency, and it allowed the application of prophylactic interventions to prevent the incidence of severe thrombosis.


Subject(s)
Blood Proteins/genetics , Frameshift Mutation , Protein S Deficiency/genetics , Adult , Early Diagnosis , Female , Humans , Male , Middle Aged , Pedigree , Protein S , Protein S Deficiency/complications , Protein S Deficiency/diagnosis , Thrombosis/etiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL