Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Insects ; 15(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38392554

ABSTRACT

The oriental armyworm, Mythimna separata (Walker), is a well-known nocturnal migratory pest that relies on its exceptional nocturnal vision for navigation during long-distance flights. In this study, we investigated the ultrastructure of the compound eyes of adult M. separata using transmission electron microscopy and quantitatively evaluated adaptational changes in the retina under light and dark conditions. The compound eyes of M. separata are superposition eyes with a clear zone. The retina shows remarkable anatomical differences under light and dark adaptation, primarily characterized by distinct patterns of rhabdoms within the clear zone: the rhabdoms are nearly absent under light adaptation, but become more voluminous under dark adaptation. In the distal, middle, and proximal sections of the clear zone, the cross-sectional areas of retinulae and rhabdoms, as well as the rhabdom occupation ratio, are significantly larger under dark adaptation than under light adaptation. Conversely, the opposite trend is observed beneath the clear zone. These results indicate remarkable plasticity in the M. separata retina throughout a normal daily cycle, providing a theoretical basis for improving searchlight and ground light trap techniques for the management of this migratory species.

2.
Arthropod Struct Dev ; 78: 101315, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104497

ABSTRACT

The Asian corn borer, Ostrinia furnacalis (Guenée), is one of the most destructive lepidopteran pests affecting maize in Asia. Previous research on the feeding behavior of O. furnacalis has mostly focused on larvae, but the adult feeding preference has been unclear hitherto. In this study, we investigated the ultramorphology of the proboscis and sensilla of O. furnacalis using scanning electron microscopy and made morphological comparisons between the sexes, attempting to make predictions on the food preference and feeding behavior of the adults. The proboscis of O. furnacalis is divided into zones 1 and 2 with three types of sensilla, namely chaetica, basiconica, and styloconica. The entire proboscis and zone 2 of the females are significantly longer than those of the males. The main sexual difference in the sensilla is shown in the number of sensilla styloconica, which are eight in females but nine in males. The feeding preference of adult O. furnacalis is discussed based on the morphology of the proboscis and sensilla.


Subject(s)
Butterflies , Moths , Female , Male , Animals , Sensilla , Zea mays , Butterflies/anatomy & histology , Larva
3.
Arthropod Struct Dev ; 72: 101230, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36706509

ABSTRACT

Compound eyes are the prominent visual organs of insects and can provide valuable information for the reconstruction of insect phylogeny. Although the largest butterfly family (Nymphalidae) has been well defined, the infrafamilial phylogenetic relationships remain controversial hitherto. In the present study the ultrastructure of the compound eyes of three nymphalids Neptis beroe, Childrena zenobia, and Palaeonympha opalina was investigated using light and transmission electron microscopy in an attempt to seek potentially important phylogenetic characters. The compound eyes of the nymphalids share a tracheal system in a "1-4-8" branching pattern. The eight tracheal subbranches exhibit distinct distribution patterns along the basal retinula cell as follows: the tracheal subbranches of Palaeonympha opaline are close to the rhabdom in the distance from the distalmost part of the basal retinula cell to the rhabdom end, while those of N. beroe and C. zenobia are on the periphery of the retinula along almost the whole basal retinula cell and become close to the rhabdom just at the proximal end of the basal retinula cell. The tracheal structure of the three nymphalids is discussed for their potential phylogenetic implications.


Subject(s)
Butterflies , Animals , Phylogeny , Insecta/ultrastructure , Microscopy, Electron, Transmission
4.
Arthropod Struct Dev ; 72: 101234, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36708647

ABSTRACT

The Bittacidae are unique in holometabolous insects in that their larvae bear a dorsal ocellus on the frons. The fine structure of the dorsal ocellus, however, has not been investigated to date. Here, the ultrastructure of the larval dorsal ocellus was studied in the hangingfly Bittacus planus Cheng, 1949 using light, scanning, and transmission electron microscopy. The dorsal ocellus of the larvae comprises a cornea, corneagenous cells, and retinula cells. The cornea is a laminated structure. A layer of corneagenous cells is located below the cornea. Numerous retinula cells are arranged tightly beneath the corneagenous cells. The retinula cells modify their adjacent membranes into numerous linear microvilli, which form an analogue of the rhabdom among adjacent retinula cells. The results show that the dorsal ocellus of larval Bittacidae is a highly vestigial organ and appears to be degenerating during the postembryonic development. The presence of the vestigial dorsal ocellus is likely to represent an ancestral plesiomorphy of holometabolous insects, providing new evidence for exploring the evolutionary origin of holometabolous larvae.


Subject(s)
Holometabola , Insecta , Animals , Larva/ultrastructure , Insecta/ultrastructure , Microscopy, Electron, Transmission , Biological Evolution , Cornea/ultrastructure
5.
Insects ; 13(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36421977

ABSTRACT

The ultrastructure of the ejaculatory duct was investigated in the scorpionflies Cerapanorpa nanwutaina (Chou 1981) and Furcatopanorpa longihypovalva (Hua & Cai, 2009) (Mecoptera: Panorpidae) using light and transmission electron microscopy. The ejaculatory ducts of both species comprise a median duct and an accessory sac. The median duct consists of a basal lamina, a mono-layered epithelium, a subcuticular cavity, and an inner cuticle. The accessory sac contains a single layer of epithelium and a basal lamina. A muscular layer is present in the accessory sac of C. nanwutaina and in the median duct of F. longihypovalva. The epithelia in the median duct and the accessory sac are well developed, their cells containing numerous cisterns of rough endoplasmic reticulum, mitochondria, and microvilli. The secretions of the median duct are first extruded into the subcuticular cavity and then into the lumen through an inner cuticle, while the secretions of the accessory sac are discharged directly into the lumen. The ejaculatory duct of F. longihypovalva is longer and has thicker epithelium with more cell organelles and secretions than that of C. nanwutaina.

6.
Micron ; 152: 103176, 2022 01.
Article in English | MEDLINE | ID: mdl-34763214

ABSTRACT

The fine structure of the larval eyes of the hangingfly Terrobittacus implicatus (Huang & Hua) was investigated using scanning and transmission electron microscopy. The results show that the larval eyes of T. implicatus each consist of seven spaced ommatidia. Each ommatidium is composed of a corneal lens with about 45 lamellae, a tetrapartite eucone type of crystalline cone, eight retinula cells, two primary pigment cells, and an undetermined number of secondary pigment cells. The rhabdomeres of eight retinula cells effectively fuse into a centrally-fused, tiered funnel-shaped rhabdom extending from the base of the crystalline cone deeply into the ommatidium. In light of different positions in the ommatidium, the retinula cells can be divided into four distal and four proximal retinula cells. Pigment cells envelop the entire ommatidium. Electron-lucent vesicles are abundant throughout the cytoplasm of the eight retinula cells. The larval ommatidia of T. implicatus are similar to those of the Panorpidae, except for the distal retinula cells that also participate in the formation of the proximal rhabdom. In this case, the larval eyes of T. implicatus may lie in the transitional stage during the larval eye evolution of insects from ommatidia to stemmata.


Subject(s)
Cornea , Insecta , Animals , Cytoplasm , Eye , Larva , Microscopy, Electron, Transmission
7.
Sci Rep ; 11(1): 13941, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230568

ABSTRACT

Odorant-binding proteins (OBPs) are prevalent in the antennal transcriptomes of different orders of insects. Studies on OBPs have focused on their role in the insect chemosensory system, but knowledge of their functions in the insect testis is limited. We sequenced the transcriptomes of the Athetis dissimilis reproductive organs and analyzed the expression of AdisOBP genes in different tissues. We identified 23 OBPs in the testis and ovaries and 31 OBPs in antennal transcriptomes. The results of real-time quantitative PCR revealed that 23 of the 54 OBP genes were highly expressed in both female and male antennae, including three that exhibited male-biased expression and 15 that exhibited female-biased expression. A total of 24 OBPs were highly expressed in the testis of A. dissimilis, while expression of OBPs in the ovaries was very low. These findings highlight the functional diversity of OBPs in insects and can facilitate further studies on the OBPs in A. dissimilis and lepidopteran species.


Subject(s)
Arthropod Antennae/metabolism , Gene Expression Regulation , Genitalia/metabolism , Lepidoptera/genetics , Receptors, Odorant/genetics , Animals , Female , Gene Expression Profiling , Gene Ontology , Male , Molecular Sequence Annotation , Ovary/metabolism , Phylogeny , Receptors, Odorant/metabolism , Sequence Analysis, DNA , Testis/metabolism , Transcriptome/genetics
8.
J Morphol ; 282(5): 733-745, 2021 05.
Article in English | MEDLINE | ID: mdl-33644867

ABSTRACT

Sensory structures on the antennae and mouthparts of insects are associated with various activities, such as host location, feeding, attracting a mate, and identifying a suitable oviposition site. Athetis lepigone (Möschler) is an important polyphagous Eurasian pest with more than 30 species of host plants. The larvae target bud leaves, prop roots, and tender stems of many agricultural crops, but the feeding habits of the adults remain poorly known. Aiming to understand the feeding behavior of the species, we investigated the fine morphology of its antennae and proboscis using scanning electron microscopy. The antennae of both sexes are filiform, and bear eight types of sensilla: Böhm's bristles, sensilla squamiformia, trichodea, chaetica, basiconica, coeloconica, styloconica, and auricillica. Sensilla trichodea are the most abundant among these sensillum types. The proboscis consists of two elongated, interlocked maxillary galeae that enclose the food canal by dorsal and ventral legulae. The external galeal surface is covered with numerous triangular microtrichia on Zone 1 and abundant blunt microbumps on Zone 2. The surface of the food canal bears closely connected and smooth semicircular ridges, gradually tapering toward the proboscis tip. Three types of sensilla are noticeable on the proboscis: sensilla trichodea, basiconica, and styloconica. We briefly discuss the putative functional significance of the antennal and proboscis sensilla and, based on the specific structural modifications of the proboscis, predict a flower-visiting habit for A. lepigone.


Subject(s)
Moths , Sensilla , Animals , Arthropod Antennae , Female , Gastrointestinal Tract , Larva , Male , Microscopy, Electron, Scanning
9.
Arthropod Struct Dev ; 53: 100901, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31760197

ABSTRACT

The Asian corn borer Ostrinia furnacalis is one of the most destructive pests of maize throughout eastern Asia and the South Pacific. In the present study the fine structure of the compound eyes of adult O. furnacalis was investigated under light/dark adaptation using light and electron microscopy. The compound eyes of male and female O. furnacalis are superposition eyes with electron-lucent clear zones. The sexual differences of the compound eyes of O. furnacalis are mainly reflected in eye size rather than ommatidial ultrastructure. Each ommatidium of both sexes contains 12 retinula cells, one of which is the basal retinula cell. All the retinula cells form a centrally-fused, two-tiered rhabdom, whose distal layer passes through the clear zone and distally connects with the crystalline cone. The ultrastructural changes under light/dark conditions mainly involve the rhabdom occupation ratio to retinula cell volume in the proximal layer of the rhabdom as well as the dimensions of the subcorneal zone and the crystalline tract. Pigment movements occur within the retinula cells and primary pigment cells, but are undetectable within the secondary pigment cells. Regardless of light or dark adaptation, in other words, the pigments never migrate into the clear zone.


Subject(s)
Compound Eye, Arthropod/ultrastructure , Darkness , Light , Moths/ultrastructure , Adaptation, Physiological , Animals , Compound Eye, Arthropod/physiology , Female , Male , Moths/physiology
10.
Arthropod Struct Dev ; 49: 119-127, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30550776

ABSTRACT

Proboscides are important feeding devices for most adult Lepidoptera and exhibit significant morphological modifications and types of sensilla associated with feeding habits. In this study the architectures of the proboscides and sensilla were compared between the cotton bollworm Helicoverpa armigera (Hübner) and the armyworm Mythimna separate (Walker) using scanning electron microscopy. The proboscides of both species consist of two elongated maxillary galeae joined by dorsal and ventral legulae, forming a food canal. The dorsal legulae in H. armigera disappear a short distance from the proboscis apex, whereas those in M. separate exist up to the apex. Three types of sensilla are present on the proboscides of both species: sensilla chaetica, basiconica, and styloconica. The morphological differences of the sensilla mainly concern the sensilla styloconica, whose styli have six to seven smooth-edged ridges in H. armigera but six serrate-edged ridges in M. separate. No significant sexual dimorphism was found in the proboscides and sensilla of both species except for the length of the zone without the dorsal legulae in H. armigera. The morphological similarities and differences of the proboscides and sensilla between the two species are briefly discussed.


Subject(s)
Moths/ultrastructure , Animals , Female , Male , Microscopy, Electron, Scanning , Sensilla/ultrastructure , Sex Characteristics
11.
PLoS One ; 11(6): e0156970, 2016.
Article in English | MEDLINE | ID: mdl-27258365

ABSTRACT

Mecoptera are unique in holometabolous insects in that their larvae have compound eyes. In the present study the cellular organisation and morphology of the compound eyes of adult individuals of the scorpionfly Panorpa dubia in Mecoptera were investigated by light, scanning electron, and transmission electron microscopy. The results showed that the compound eyes of adult P. dubia are of the apposition type, each eye comprising more than 1200 ommatidia. The ommatidium consists of a cornea, a crystalline cone made up of four cone cells, eight photoreceptors, two primary pigment cells, and 18 secondary pigment cells. The adult ommatidium has a fused rhabdom with eight photoreceptors. Seven photoreceptors extend from the proximal end of the crystalline cone to the basal matrix, whereas the eighth photoreceptor is shorter, extending from the middle level of the photoreceptor cluster to the basal matrix. The fused rhabdom is composed of the rhabdomeres of different photoreceptors at different levels. The adult ommatidia have the same cellular components as the larval ommatidia, but the tiering scheme is different.


Subject(s)
Compound Eye, Arthropod/anatomy & histology , Compound Eye, Arthropod/ultrastructure , Insecta/anatomy & histology , Insecta/ultrastructure , Animals , Cornea/anatomy & histology , Cornea/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...