Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
1.
Heliyon ; 10(9): e30409, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726137

ABSTRACT

Methods: Our approach encompasses analyzing MAP7's expression levels across various datasets and clinical specimens, evaluating its association with patient outcomes, and probing its influence on ovarian cancer cell dynamics such as proliferation, migration, invasion, and apoptosis. Results: We have identified significant upregulation of MAP7 in ovarian cancer tissues, which correlates with advanced disease stages, higher pathological grades, and unfavorable prognoses. Functionally, the inhibition of MAP7 suppresses cancer cell proliferation, migration, and invasion while promoting apoptosis. Notably, the silencing of MAP7 attenuates the epithelial-mesenchymal transition (EMT) and disrupts Wnt/ß-catenin pathway signaling-two critical processes implicated in metastasis and chemoresistance. In cisplatin-resistant A2780-DDP cells, the downregulation of MAP7 effectively reverses their resistance to cisplatin. Furthermore, the nuclear localization of MAP7 in these cells underscores its pivotal role in driving cisplatin resistance by modulating the transcriptional regulation and interaction dynamics of ß-catenin. Conclusion: Our findings position MAP7 as a pivotal element in ovarian cancer advancement and cisplatin resistance, primarily through its modulation of EMT and the Wnt/ß-catenin pathway. Its association with poor clinical outcomes underscores its potential as both a prognostic marker and a therapeutic target. Strategies aimed at MAP7 could represent a new frontier in combating chemotherapy resistance in ovarian cancer, emphasizing its significance in crafting complementary treatments for this disease.

2.
Front Endocrinol (Lausanne) ; 15: 1353068, 2024.
Article in English | MEDLINE | ID: mdl-38726341

ABSTRACT

Introduction: Despite the global prevalence of coronavirus disease 2019 (COVID-19), limited research has been conducted on the effects of SARS-CoV-2 infection on human reproduction. The aims of this study were to investigate the impact of SARS-CoV-2 infection during controlled ovarian stimulation (COS) on the outcomes of assisted reproductive treatment (ART) and the cytokine status of patients. Methods: This retrospective cohort study included 202 couples who received ART treatment, 101 couples infected with SARS-CoV-2 during COS and 101 matched uninfected couples. The parameters of ovarian stimulation and pregnancy outcomes were compared between the two groups. The All-Human Inflammation Array Q3 kit was utilized to measure cytokine levels in both blood and follicular fluid. Results: No difference was found in the number of good-quality embryos (3.3 ± 3.1 vs. 3.0 ± 2.2, P = 0.553) between the infected and uninfected groups. Among couples who received fresh embryo transfers, no difference was observed in clinical pregnancy rate (53.3% vs. 51.5%, P = 0.907). The rates of fertilization, implantation, miscarriage, ectopic pregnancy and live birth were also comparable between the two groups. After adjustments were made for confounders, regression models indicated that the quality of embryos (B = 0.16, P = 0.605) and clinical pregnancy rate (P = 0.206) remained unaffected by SARS-CoV-2 infection. The serum levels of MCP-1, TIMP-1, I-309, TNF-RI and TNF-RII were increased, while that of eotaxin-2 was decreased in COVID-19 patients. No significant difference was found in the levels of cytokines in follicular fluid between the two groups. Conclusion: Asymptomatic or mild COVID-19 during COS had no adverse effects on ART outcomes. Although mild inflammation was present in the serum, it was not detected in the follicular fluid of these patients. The subsequent immune response needs further investigation.


Subject(s)
COVID-19 , Ovulation Induction , Pregnancy Outcome , Reproductive Techniques, Assisted , Humans , COVID-19/immunology , COVID-19/therapy , Female , Pregnancy , Ovulation Induction/methods , Adult , Retrospective Studies , Male , SARS-CoV-2 , Pregnancy Rate , Follicular Fluid/metabolism , Cytokines/blood , Cytokines/metabolism , Inflammation , Embryo Transfer , Treatment Outcome
4.
Mol Cell Endocrinol ; 591: 112274, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777211

ABSTRACT

It has been reported that immune factors are associated with the occurrence of polycystic ovary syndrome (PCOS). Interleukin-1 (IL-1) is a member of the interleukin family that widely participates in the regulation of the inflammatory response in the immune system. In addition, it has been reported that aberrant IL-1 accumulation in serum is associated with the occurrence of PCOS. However, little is known about how IL-1 participates in the pathogenesis of PCOS. In the present study, we demonstrated that the immune microenvironment was altered in follicular fluid from PCOS patients and that the expression levels of two IL-1 cytokines, IL-1α and IL-1ß were increased. Transcriptome analysis revealed that IL-1α and IL-1ß treatment induced primary human granulosa-lutein (hGL) cell inflammatory response and increased the expression of serpin family E member 1 (SERPINE1). Mechanistically, we demonstrated that IL-1α and IL-1ß upregulated SERPINE1 expression through IL-1R1-mediated activation of downstream P50 and P52 signaling pathways in human granulosa cells. Our study highlighted the role of immune state changes in the occurrence of PCOS and provided new insight into the treatment of patients with IL-1-induced ovarian function disorders.

5.
Sci Rep ; 14(1): 12476, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816411

ABSTRACT

Fatty acid metabolism has been identified as an emerging hallmark of cancer, which was closely associated with cancer prognosis. Whether fatty acid metabolism-related genes (FMGs) signature play a more crucial role in biological behavior of esophageal squamous cell carcinoma (ESCC) prognosis remains unknown. Thus, we aimed to identify a reliable FMGs signature for assisting treatment decisions and prognosis evaluation of ESCC. In the present study, we conducted consensus clustering analysis on 259 publicly available ESCC samples. The clinical information was downloaded from The Cancer Genome Atlas (TCGA, 80 ESCC samples) and Gene Expression Omnibus (GEO) database (GSE53625, 179 ESCC samples). A consensus clustering arithmetic was used to determine the FMGs molecular subtypes, and survival outcomes and immune features were evaluated among the different subtypes. Kaplan-Meier analysis and the receiver operating characteristic (ROC) was applied to evaluate the reliability of the risk model in training cohort, validation cohort and all cohorts. A nomogram to predict patients' 1-year, 3-year and 5-year survival rate was also studied. Finally, CCK-8 assay, wound healing assay, and transwell assay were implemented to evaluate the inherent mechanisms of FMGs for tumorigenesis in ESCC. Two subtypes were identified by consensus clustering, of which cluster 2 is preferentially associated with poor prognosis, lower immune cell infiltration. A fatty acid (FA) metabolism-related risk model containing eight genes (FZD10, TACSTD2, MUC4, PDLIM1, PRSS12, BAALC, DNAJA2 and ALOX12B) was established. High-risk group patients displayed worse survival, higher stromal, immune and ESTIMATE scores than in the low-risk group. Moreover, a nomogram revealed good predictive ability of clinical outcomes in ESCC patients. The results of qRT-PCR analysis revealed that the MUC4 and BAALC had high expression level, and FZD10, PDLIM1, TACSTD2, ALOX12B had low expression level in ESCC cells. In vitro, silencing MUC4 remarkably inhibited ESCC cell proliferation, invasion and migration. Our study fills the gap of FMGs signature in predicting the prognosis of ESCC patients. These findings revealed that cluster subtypes and risk model of FMGs had effects on survival prediction, and were expected to be the potential promising targets for ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Fatty Acids , Gene Expression Regulation, Neoplastic , Mucin-4 , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Fatty Acids/metabolism , Mucin-4/genetics , Mucin-4/metabolism , Prognosis , Cell Line, Tumor , Female , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Middle Aged , Gene Expression Profiling , Nomograms , Kaplan-Meier Estimate
6.
Zhongguo Zhen Jiu ; 44(5): 526-30, 2024 May 12.
Article in Chinese | MEDLINE | ID: mdl-38764102

ABSTRACT

OBJECTIVE: To observe the clinical efficacy and safety of fire dragon cupping in prevention and treatment of chemotherapy-induced nausea and vomiting (CINV) in breast cancer. METHODS: Sixty breast cancer patients receiving medium-high emetogenic chemotherapy regimen were randomly divided into an observation group (30 cases, 3 cases dropped out) and a control group (30 cases, 3 cases dropped out). In both groups, 5 mg tropisetron hydrochloride was given intravenously on the day of chemotherapy and 1st to 3rd days after chemotherapy. In the observation group, fire dragon cupping on the abdomen was applied on 1st, 3rd and 5th days after chemotherapy. The incidence of nausea, vomiting, loss of appetite, abdominal pain, abdominal distension, the severity of nausea, vomiting on 1st to 6th days after chemotherapy, and the duration of nausea, vomiting, loss of appetite were observed in the two groups. The self-rating anxiety scale (SAS) score, general comfort questionnaire scale (GCQ) score before and after treatment and remedy antiemetic medication were observed in the two groups, and the safety was evaluated. RESULTS: On 2nd to 6th days after chemotherapy, the number of patients with nausea, loss of appetite and abdominal distension and nausea scores in the observation group were lower than those in the control group (P<0.05). On 1st to 3rd days after chemotherapy, the number of patients with vomiting and vomiting scores in the observation group were lower than those in the control group (P<0.05). The duration of nausea, vomiting and loss of appetite in the observation group were shorter than those in the control group (P<0.05). In the observation group, there was no significant difference in SAS and GCQ scores before and after treatment (P>0.05). After treatment, the GCQ score in the control group was decreased compared with that before treatment (P<0.05). After treatment, there was no significant difference in SAS and GCQ scores between the two groups (P>0.05). There was no significant difference in the number of patients using remedy medication between the two groups (P>0.05). No adverse reaction occurred during treatment in both groups. CONCLUSION: Fire dragon cupping can effectively reduce the incidence of nausea, vomiting, loss of appetite and the severity of nausea, vomiting related to chemotherapy in breast cancer, and improve patient comfort, and have good safety.


Subject(s)
Breast Neoplasms , Nausea , Vomiting , Humans , Female , Breast Neoplasms/drug therapy , Middle Aged , Nausea/therapy , Nausea/prevention & control , Nausea/etiology , Nausea/chemically induced , Vomiting/therapy , Vomiting/chemically induced , Vomiting/prevention & control , Adult , Antineoplastic Agents/adverse effects , Aged
7.
Article in English | MEDLINE | ID: mdl-38768004

ABSTRACT

Although contrast-enhanced computed tomography (CE-CT) images significantly improve the accuracy of diagnosing focal liver lesions (FLLs), the administration of contrast agents imposes a considerable physical burden on patients. The utilization of generative models to synthesize CE-CT images from non-contrasted CT images offers a promising solution. However, existing image synthesis models tend to overlook the importance of critical regions, inevitably reducing their effectiveness in downstream tasks. To overcome this challenge, we propose an innovative CE-CT image synthesis model called Segmentation Guided Crossing Dual Decoding Generative Adversarial Network (SGCDD-GAN). Specifically, the SGCDD-GAN involves a crossing dual decoding generator including an attention decoder and an improved transformation decoder. The attention decoder is designed to highlight some critical regions within the abdominal cavity, while the improved transformation decoder is responsible for synthesizing CE-CT images. These two decoders are interconnected using a crossing technique to enhance each other's capabilities. Furthermore, we employ a multi-task learning strategy to guide the generator to focus more on the lesion area. To evaluate the performance of proposed SGCDD-GAN, we test it on an in-house CE-CT dataset. In both CE-CT image synthesis tasks-namely, synthesizing ART images and synthesizing PV images-the proposed SGCDD-GAN demonstrates superior performance metrics across the entire image and liver region, including SSIM, PSNR, MSE, and PCC scores. Furthermore, CE-CT images synthetized from our SGCDD-GAN achieve remarkable accuracy rates of 82.68%, 94.11%, and 94.11% in a deep learning-based FLLs classification task, along with a pilot assessment conducted by two radiologists.

8.
Metabolites ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668355

ABSTRACT

The production performance of dairy cattle is closely related to their metabolic state. This study aims to provide a comprehensive understanding of the production performance and metabolic features of Sanhe dairy cattle across different parities, with a specific focus on evaluating variations in milk traits and metabolites in both milk and serum. Sanhe dairy cattle from parities 1 to 4 (S1, n = 10; S2, n = 9; S3, n = 10; and S4, n = 10) at mid-lactation were maintained under the same feeding and management conditions. The milk traits, hydrolyzed milk amino acid levels, serum biochemical parameters, and serum free amino acid levels of the Sanhe dairy cattle were determined. Multiparous Sanhe dairy cattle (S2, S3, and S4) had a greater milk protein content, lower milk lactose content, and lower solids-not-fat content than primiparous Sanhe dairy cattle (S1). Moreover, S1 had a higher ratio of essential to total amino acids (EAAs/TAAs) in both the serum and milk. The serum biochemical results showed the lower glucose and total protein levels in S1 cattle were associated with milk quality. Furthermore, ultra-high-resolution high-performance liquid chromatography with tandem MS analysis (UPLC-MS/MS) identified 86 and 105 differential metabolites in the serum and milk, respectively, and these were mainly involved in amino acid, carbohydrate, and lipid metabolism. S1 and S2/S3/S4 had significantly different metabolic patterns in the serum and milk, and more vitamin B-related metabolites were significantly higher identified in S1 than in multiparous cattle. Among 36 shared differential metabolites in the serum and milk, 10 and 7 metabolites were significantly and strongly correlated with differential physiological indices, respectively. The differential metabolites identified were enriched in key metabolic pathways, illustrating the metabolic characteristics of the serum and milk from Sanhe dairy cattle of different parities. L-phenylalanine, dehydroepiandrosterone, and linoleic acid in the milk and N-acetylornithine in the serum could be used as potential marker metabolites to distinguish between Sanhe dairy cattle with parities of 1-4. In addition, a metabolic map of the serum and milk from the three aspects of carbohydrates, amino acids, and lipids was created for the further analysis and exploration of their relationships. These results reveal significant variations in milk traits and metabolites across different parities of Sanhe dairy cattle, highlighting the influence of parity on the metabolic profiles and production performance. Tailored nutritional strategies based on parity-specific metabolic profiles are recommended to optimize milk production and quality in Sanhe cattle.

9.
Plants (Basel) ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38592895

ABSTRACT

Dendrobium officinale Kimura et Migo (D. officinale) is one of the most important traditional Chinese medicinal herbs, celebrated for its abundant bioactive ingredients. This study demonstrated that the diurnal temperature difference (DIF) (T1: 13/13 °C, T2: 25/13 °C, and T3: 25/25 °C) was more favorable for high chlorophyll, increased polysaccharide, and total flavonoid contents compared to constant temperature treatments in D. officinale PLBs. The transcriptome analysis revealed 4251, 4404, and 4536 differentially expressed genes (DEGs) in three different comparisons (A: 25/13 °C vs. 13/13 °C, B: 13/13 °C vs. 25/25 °C, and C: 25/13 °C vs. 25/25 °C, respectively). The corresponding up-/down-regulated DEGs were 1562/2689, 2825/1579, and 2310/2226, respectively. GO and KEGG enrichment analyses of DEGs showed that the pathways of biosynthesis of secondary metabolites, carotenoid biosynthesis, and flavonoid biosynthesis were enriched in the top 20; further analysis of the sugar- and flavonol-metabolism pathways in D. officinale PLBs revealed that the DIF led to a differential gene expression in the enzymes linked to sugar metabolism, as well as to flavonol metabolism. Certain key metabolic genes related to ingredient accumulation were identified, including those involved in polysaccharide metabolism (SUS, SUT, HKL1, HGL, AMY1, and SS3) and flavonol (UGT73C and UGT73D) metabolism. Therefore, these findings indicated that these genes may play an important role in the regulatory network of the DIF in the functional metabolites of D. officinale PLBs. In a MapMan annotation of abiotic stress pathways, the DEGs with significant changes in their expression levels were mainly concentrated in the heat-stress pathways, including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs). In particular, the expression levels of HSP18.2, HSP70, and HSF1 were significantly increased under DIF treatment, which suggested that HSF1, HSP70 and HSP18.2 may respond to the DIF. In addition, they can be used as candidate genes to study the effect of the DIF on the PLBs of D. officinale. The results of our qPCR analysis are consistent with those of the transcriptome-expression analysis, indicating the reliability of the sequencing. The results of this study revealed the transcriptome mechanism of the DIF on the accumulation of the functional metabolic components of D. officinale. Furthermore, they also provide an important theoretical basis for improving the quality of D. officinale via the DIF in production.

10.
Animals (Basel) ; 14(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612240

ABSTRACT

Ovarian follicular GCs are strongly implicated in the growth, development, and atresia of ovarian follicles. The Wnt/ß-catenin and Notch signaling pathways participate in GC proliferation, differentiation, apoptosis, and steroid hormone production during follicular development. However, the crosstalk between Wnt and Notch signaling in GCs remains unclear. This study investigated this crosstalk and the roles of these pathways in apoptosis, cell cycle progression, cell proliferation, and steroid hormone secretion in bovine follicular GCs. The interaction between ß-catenin and Notch2 in GCs was assessed by overexpressing CTNNB1, which encodes ß-catenin. The results showed that inhibiting the Notch pathway by Notch2 silencing in GCs arrested the cell cycle, promoted apoptosis, reduced progesterone (P4) production, and inhibited the Wnt2-mediated Wnt/ß-catenin pathway in GCs. IWR-1 inhibited Wnt2/ß-catenin and Notch signaling, reduced GC proliferation, stimulated apoptosis, induced G1 cell cycle arrest, and reduced P4 production. CTNNB1 overexpression had the opposite effect and increased 17ß-estradiol (E2) production and Notch2 protein expression. Co-immunoprecipitation assays revealed that Notch2 interacted with ß-catenin. These results elucidate the crosstalk between the Wnt/ß-catenin and Notch pathways and the role of these pathways in bovine follicular GC development.

11.
Biomed Phys Eng Express ; 10(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38457851

ABSTRACT

Contrast-enhanced computed tomography (CE-CT) images are vital for clinical diagnosis of focal liver lesions (FLLs). However, the use of CE-CT images imposes a significant burden on patients due to the injection of contrast agents and extended shooting. Deep learning-based image synthesis models offer a promising solution that synthesizes CE-CT images from non-contrasted CT (NC-CT) images. Unlike natural images, medical image synthesis requires a specific focus on certain organs or localized regions to ensure accurate diagnosis. Determining how to effectively emphasize target organs poses a challenging issue in medical image synthesis. To solve this challenge, we present a novel CE-CT image synthesis model called, Organ-Aware Generative Adversarial Network (OA-GAN). The OA-GAN comprises an organ-aware (OA) network and a dual decoder-based generator. First, the OA network learns the most discriminative spatial features about the target organ (i.e. liver) by utilizing the ground truth organ mask as localization cues. Subsequently, NC-CT image and captured feature are fed into the dual decoder-based generator, which employs a local and global decoder network to simultaneously synthesize the organ and entire CECT image. Moreover, the semantic information extracted from the local decoder is transferred to the global decoder to facilitate better reconstruction of the organ in entire CE-CT image. The qualitative and quantitative evaluation on a CE-CT dataset demonstrates that the OA-GAN outperforms state-of-the-art approaches for synthesizing two types of CE-CT images such as arterial phase and portal venous phase. Additionally, subjective evaluations by expert radiologists and a deep learning-based FLLs classification also affirm that CE-CT images synthesized from the OA-GAN exhibit a remarkable resemblance to real CE-CT images.


Subject(s)
Arteries , Liver , Humans , Liver/diagnostic imaging , Semantics , Tomography, X-Ray Computed
12.
Liver Int ; 44(6): 1351-1362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436551

ABSTRACT

BACKGROUND AND AIMS: Accurate preoperative prediction of microvascular invasion (MVI) and recurrence-free survival (RFS) is vital for personalised hepatocellular carcinoma (HCC) management. We developed a multitask deep learning model to predict MVI and RFS using preoperative MRI scans. METHODS: Utilising a retrospective dataset of 725 HCC patients from seven institutions, we developed and validated a multitask deep learning model focused on predicting MVI and RFS. The model employs a transformer architecture to extract critical features from preoperative MRI scans. It was trained on a set of 234 patients and internally validated on a set of 58 patients. External validation was performed using three independent sets (n = 212, 111, 110). RESULTS: The multitask deep learning model yielded high MVI prediction accuracy, with AUC values of 0.918 for the training set and 0.800 for the internal test set. In external test sets, AUC values were 0.837, 0.815 and 0.800. Radiologists' sensitivity and inter-rater agreement for MVI prediction improved significantly when integrated with the model. For RFS, the model achieved C-index values of 0.763 in the training set and ranged between 0.628 and 0.728 in external test sets. Notably, PA-TACE improved RFS only in patients predicted to have high MVI risk and low survival scores (p < .001). CONCLUSIONS: Our deep learning model allows accurate MVI and survival prediction in HCC patients. Prospective studies are warranted to assess the clinical utility of this model in guiding personalised treatment in conjunction with clinical criteria.


Subject(s)
Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Magnetic Resonance Imaging , Neoplasm Invasiveness , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Magnetic Resonance Imaging/methods , Retrospective Studies , Female , Male , Middle Aged , Aged , Microvessels/diagnostic imaging , Microvessels/pathology , Disease-Free Survival , Neoplasm Recurrence, Local
13.
Carbohydr Polym ; 332: 121909, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431413

ABSTRACT

COMT inhibitors are commonly used to improve the effectiveness of levodopa in treating Parkinson's disease by inhibiting its conversion to 3-O-methyldopa. Because of the serious side effect of nitrocatechol COMT inhibitors, it is necessary to develop non-nitrocatechol COMT inhibitors with a higher safety profile. Heparin has been observed to bind to COMT. However, the exact functional significance of this interaction is not fully understood. In this study, the contribution of different substitution of heparin to its binding with COMT was investigated. In vitro and in vivo, heparin oligosaccharides can bind to COMT and inhibit its activity. Furthermore, we enriched the functional heparin oligosaccharides that bind to COMT and identified the sequence UA2S-GlcN(S/Ac)6(S/H)-UA2S-GlcNS6(S/H)-UA2(S/H)-GlcNS6S as the characteristic structural domain of these functional oligosaccharides. This study has elucidated the relationship between the structure of heparin oligosaccharides and their activity against COMT, providing valuable insights for the development of non-nitrocatechol COMT inhibitors with improved safety and efficacy.


Subject(s)
Catechol O-Methyltransferase , Parkinson Disease , Humans , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/therapeutic use , Heparin/therapeutic use , Catechol O-Methyltransferase Inhibitors/pharmacology , Catechol O-Methyltransferase Inhibitors/therapeutic use , Levodopa , Parkinson Disease/drug therapy
14.
Immun Inflamm Dis ; 12(2): e1202, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38411294

ABSTRACT

BACKGROUND: Histiocytic necrotizing lymphadenitis (HNL) is a self-limited inflammatory disease of unknown pathogenesis. A very small fraction of patients with HNL could develop hemophagocytic lymphohistiocytosis (HLH), a hyperinflammatory disorder. These patients are diagnosed as HNL with HLH (HNL-HLH). HNL-HLH in the pediatric population has been systemically studied, however, the clinical, laboratory, and radiological features and outcomes of adult patients with HNL-HLH remain to be explored. We aimed to explore the clinical, laboratory, and radiological features and outcomes of adult patients with HNL-HLH. METHODS: We collected the clinical data of patients with HNL-HLH admitted to the First Affiliated Hospital of Nanjing Medical University from October 2010 to June 2015. All the patients underwent lymph node biopsy and have a pathological diagnosis of HNL. The age, gender, clinical presentation, lymph node signs, laboratory findings and imaging data, and pathological findings of the patients were collected. RESULTS: In this study, we reported five adult patients with HNL-HLH. All five patients showed enlarged lymph nodes and prolonged fever. Laboratory findings were consistent with the diagnosis of HLH. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) showed enlarged lymph nodes with increased FDG uptake and splenic hypermetabolism could be present. All the patients responded well to corticosteroids and had a good prognosis. Two of the five patients were diagnosed with systemic lupus erythematosus during the follow-up. CONCLUSIONS: Our study demonstrated that adult patients with HNL-HLH showed distinct clinical, laboratory, and radiological features. And the prognosis is good and patients could be managed with steroids and supportive care.


Subject(s)
Histiocytic Necrotizing Lymphadenitis , Lymphohistiocytosis, Hemophagocytic , Adult , Humans , Child , Histiocytic Necrotizing Lymphadenitis/complications , Histiocytic Necrotizing Lymphadenitis/diagnosis , Histiocytic Necrotizing Lymphadenitis/drug therapy , Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/drug therapy , Positron Emission Tomography Computed Tomography/adverse effects , Lymph Nodes , Biopsy/adverse effects
15.
Cureus ; 16(1): e51575, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38313908

ABSTRACT

Biliary adenofibroma (BAF) is a rare benign tumor, but it has the potential for malignant transformation. The differentiation between benign and malignant forms of BAF before surgery is of great importance for clinical decision-making. We report a case of BAF with invasive carcinoma. The patient did not present any clinical symptoms but had a history of hepatitis B virus infection for more than twenty years. Magnetic resonance imaging (MRI) revealed a solid and cystic 4 cm mass in segment II of the liver exhibiting hypointense signals on T1-weighted images and intermediate-to-high intensity signals on T2-weighted images. Enhancement scanning revealed markedly rim-like enhancement on the arterial phase, with the left inter-hepatic artery as the tumor-feeding artery, and wash-out on the venous and delayed phases. To the best of our knowledge, BAF with invasive carcinoma is uncommon. Preoperative qualitative diagnosis based on imaging features can achieve the maximum benefit for patients.

16.
Carbohydr Polym ; 330: 121834, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368111

ABSTRACT

Endothelial dysfunction induced by oxidative stress is an early predictor of atherosclerosis, which can cause various cardiovascular diseases. The glycocalyx layer on the endothelial cell surface acts as a barrier to maintain endothelial biological function, and it can be impaired by oxidative stress. However, the mechanism of glycocalyx damage during the development of atherosclerosis remains largely unclear. Herein, we established a novel strategy to address these issues from the glycomic perspective that has long been neglected. Using countercharged fluorescence protein staining and quantitative mass spectrometry, we found that heparan sulfate, a major component of the glycocalyx, was structurally altered by oxidative stress. Comparative proteomics and protein microarray analysis revealed several new heparan sulfate-binding proteins, among which alpha-2-Heremans-Schmid glycoprotein (AHSG) was identified as a critical protein. The molecular mechanism of AHSG with heparin was characterized through several methods. A heparan analog could relieve atherosclerosis by protecting heparan sulfate from degradation during oxidative stress and by reducing the accumulation of AHSG at lesion sites. In the present study, the molecular mechanism of anti-atherosclerotic effect of heparin through interaction with AHSG was revealed. These findings provide new insights into understanding of glycocalyx damage in atherosclerosis and lead to the development of corresponding therapeutics.


Subject(s)
Atherosclerosis , Glycocalyx , Humans , Heparitin Sulfate/metabolism , Endothelial Cells/metabolism , Atherosclerosis/drug therapy , Heparin/pharmacology
17.
Int J Biol Macromol ; 262(Pt 1): 129846, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296150

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder influenced by various factors, including age, genetics, and the environment. Current treatments provide symptomatic relief without impeding disease progression. Previous studies have demonstrated the therapeutic potential of exogenous heparin and chondroitin sulfate in PD. However, their therapeutic mechanisms and structure-activity relationships remain poorly understood. In this study, low-molecular-weight heparin (L-HP) and chondroitin sulfate (L-CS) exhibited favorable therapeutic effects in a mouse model of PD. Proteomics revealed that L-HP attenuated mitochondrial dysfunction through its antioxidant properties, whereas L-CS suppressed neuroinflammation by inhibiting platelet activation. Two glycosaminoglycan (GAG)-binding proteins, manganese superoxide dismutase (MnSOD2) and fibrinogen beta chain (FGB), were identified as potential targets of L-HP and L-CS, and we investigated their structure-activity relationships. The IdoA2S-GlcNS6S/GlcNAc6S unit in HP bound to SOD2, whereas the GlcA-GalNAc4S and GlcA-GalNAc4S6S units in CS preferred FGB. Furthermore, N-S and 2-O-S in L-HP, and 4-O-S, 6-O-S, and -COOH in L-CS contributed significantly to the binding process. These findings provide new insights and evidence for the development and use of glycosaminoglycan-based therapeutics for PD.


Subject(s)
Chondroitin Sulfates , Parkinson Disease , Animals , Mice , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/therapeutic use , Chondroitin Sulfates/chemistry , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/therapeutic use , Parkinson Disease/drug therapy , Glycosaminoglycans/pharmacology , Glycosaminoglycans/chemistry , Heparin
18.
Stud Health Technol Inform ; 310: 901-905, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269939

ABSTRACT

Object detection using convolutional neural networks (CNNs) has achieved high performance and achieved state-of-the-art results with natural images. Compared to natural images, medical images present several challenges for lesion detection. First, the sizes of lesions vary tremendously, from several millimeters to several centimeters. Scale variations significantly affect lesion detection accuracy, especially for the detection of small lesions. Moreover, the effective extraction of temporal and spatial features from multi-phase CT images is also an important issue. In this paper, we propose a group-based deep layer aggregation method with multiphase attention for liver lesion detection in multi-phase CT images. The method, which is called MSPA-DLA++, is a backbone feature extraction network for anchor-free liver lesion detection in multi-phase CT images that addresses scale variations and extracts hidden features from such images. The effectiveness of the proposed method is demonstrated on public datasets (LiTS2017) and our private multiphase dataset. The results of the experiments show that MSPA-DLA++ can improve upon the performance of state-of-the-art networks by approximately 3.7%.


Subject(s)
Liver Neoplasms , Neural Networks, Computer , Humans , Tomography, X-Ray Computed
19.
Front Pharmacol ; 15: 1290120, 2024.
Article in English | MEDLINE | ID: mdl-38292937

ABSTRACT

Ferroptosis, distinct from apoptosis, is a novel cellular death pathway characterized by the build-up of lipid peroxidation and reactive oxygen species (ROS) derived from lipids within cells. Recent studies demonstrated the efficacy of ferroptosis inducers in targeting malignant cells, thereby establishing a promising avenue for combating cancer. Traditional Chinese medicine (TCM) has a long history of use and is widely used in cancer treatment. TCM takes a holistic approach, viewing the patient as a system and utilizing herbal formulas to address complex diseases such as cancer. Recent TCM studies have elucidated the molecular mechanisms underlying ferroptosis induction during cancer treatment. These studies have identified numerous plant metabolites and derivatives that target multiple pathways and molecular targets. TCM can induce ferroptosis in tumor cells through various regulatory mechanisms, such as amino acid, iron, and lipid metabolism pathways, which may provide novel therapeutic strategies for apoptosis-resistant cancer treatment. TCM also influence anticancer immunotherapy via ferroptosis. This review comprehensively elucidates the molecular mechanisms underlying ferroptosis, highlights the pivotal regulatory genes involved in orchestrating this process, evaluates the advancements made in TCM research pertaining to ferroptosis, and provides theoretical insights into the induction of ferroptosis in tumors using botanical drugs.

20.
Mol Cell Endocrinol ; 580: 112084, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37923054

ABSTRACT

Granulosa cell apoptosis contributes to the occurrence of diminished ovarian reserve (DOR). HOXA1, belonging to the HOX gene family, is involved in regulating cancer cell apoptosis. However, whether HOXA1 participates in the granulosa cell apoptosis in DOR patients remains to be elucidated. In the current study, we demonstrated the differential transcriptomic landscape of granulosa cells in DOR patients compared to that in the controls and identified decreased expression of the HOXA1 gene. Meanwhile, we found that HOXA1 was a gonadotropin-response gene, in which FSH could promote its expression, whereas LH inhibited HOXA1 expression in human granulosa cells. CCK-8 assay, flow cytometry and TUNEL staining results showed that inhibition of endogenous HOXA1 expression promoted human granulosa cell apoptosis. Moreover, knockdown of HOXA1 increased Bax while reducing Bcl2 protein expression. Furthermore, we found a total of 947 differentially expressed genes (DEGs), including 426 upregulated genes and 521 downregulated genes using transcriptome sequencing technology. Enrichment analysis results showed that the DEGs were involved in apoptosis and mitochondrial function-related signaling pathways. Knockdown of HOXA1 impaired mitochondrial functions, exhibiting increased reactive oxygen species (ROS) and cytoplasmic Ca2+ levels, decreased mitochondrial membrane potential, ATP production and mitochondrial DNA (mtDNA) copy number, and abnormal mitochondrial cristae. Our findings demonstrated that aberrantly reduced HOXA1 expression induced granulosa cell apoptosis in DOR patients and impaired mitochondrial function, which highlighted the potential role of HOXA1 in the occurrence of DOR and provided new insight for the treatment of DOR.


Subject(s)
Mitochondrial Diseases , Ovarian Reserve , Female , Humans , Apoptosis/genetics , Down-Regulation/genetics , Genes, Homeobox , Granulosa Cells/metabolism , Mitochondrial Diseases/metabolism , Ovarian Reserve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...