Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 677
Filter
1.
Cell Commun Signal ; 22(1): 302, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831335

ABSTRACT

The ubiquitination-mediated protein degradation exerts a vital role in the progression of multiple tumors. NEDD4L, which belongs to the E3 ubiquitin ligase NEDD4 family, is related to tumor genesis, metastasis and drug resistance. However, the anti-tumor role of NEDD4L in esophageal carcinoma, and the potential specific recognition substrate remain unclear. Based on public esophageal carcinoma database and clinical sample data, it was discovered in this study that the expression of NEDD4L in esophageal carcinoma was apparently lower than that in atypical hyperplastic esophageal tissue and esophageal squamous epithelium. Besides, patients with high expression of NEDD4L in esophageal carcinoma tissue had longer progression-free survival than those with low expression. Experiments in vivo and in vitro also verified that NEDD4L suppressed the growth and metastasis of esophageal carcinoma. Based on co-immunoprecipitation and proteome analysis, the NEDD4L ubiquitination-degraded protein ITGB4 was obtained. In terms of the mechanism, the HECT domain of NEDD4L specifically bound to the Galx-ß domain of ITGB4, which modified the K915 site of ITGB4 in an ubiquitination manner, and promoted the ubiquitination degradation of ITGB4, thus suppressing the malignant phenotype of esophageal carcinoma.


Subject(s)
Disease Progression , Esophageal Neoplasms , Integrin beta4 , Nedd4 Ubiquitin Protein Ligases , Proteolysis , Ubiquitination , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Humans , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Animals , Cell Line, Tumor , Integrin beta4/metabolism , Integrin beta4/genetics , Mice, Nude , Mice , Cell Proliferation , Male , Gene Expression Regulation, Neoplastic , Female
2.
Immune Netw ; 24(2): e3, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38725674

ABSTRACT

Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages. In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68+ cell number and the levels of iNOS, TNF-α, IL-1ß (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO-CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.

3.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Article in English | MEDLINE | ID: mdl-38747174

ABSTRACT

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Subject(s)
Phosphorus , Plant Roots , Silicates , Soil Microbiology , Soil , Phosphorus/metabolism , Soil/chemistry , Plant Roots/metabolism , Plant Roots/growth & development , Silicates/metabolism , Mycorrhizae/physiology , Calcium Compounds , Carbon/metabolism
4.
Genome Biol ; 25(1): 117, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715110

ABSTRACT

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Subject(s)
Pre-Eclampsia , Trophoblasts , Vascular Remodeling , Pre-Eclampsia/genetics , Pregnancy , Female , Humans , Trophoblasts/metabolism , Vascular Remodeling/genetics , Placenta/metabolism , DNA Methylation , Epigenesis, Genetic , Endothelial Cells/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomic Imprinting , Transforming Growth Factor beta/metabolism , Fetal Growth Retardation/genetics , Placentation/genetics , RNA-Binding Proteins , Apoptosis Regulatory Proteins
5.
AMB Express ; 14(1): 58, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761313

ABSTRACT

This experiment aimed to investigate the impact of malic acid (MA) and citric acid (CA) on the nutritional composition, fermentation quality, rumen degradation rate, and microbial diversity of a mixture of apple pomace and corn protein powder during ensiling. The experiment used apple pomace and corn protein powder as raw materials, with four groups: control group (CON), malic acid treatment group (MA, 10 g/kg), citric acid treatment group (CA, 10 g/kg), and citric acid + malic acid treatment group (MA, 10 g/kg + CA, 10 g/kg). Each group has 3 replicates, with 2 repetitions in parallel, subjected to mixed ensiling for 60 days. The results indicated: (1) Compared to the CON group, the crude protein content significantly increased in the MA, CA, and MA + CA groups (p < 0.05), with the highest content observed in the MA + CA group. The addition of MA and CA effectively reduced the water-soluble carbohydrate (WSC) content (p < 0.05). Simultaneously, the CA group showed a decreasing trend in NDFom and hemicellulose content (p = 0.08; p = 0.09). (2) Compared to the CON group, the pH significantly decreased in the MA, CA, and MA + CA groups (p < 0.01), and the three treatment groups exhibited a significant increase in lactic acid and acetic acid content (p < 0.01). The quantity of lactic acid bacteria increased significantly (p < 0.01), with the MA + CA group showing a more significant increase than the MA and CA groups (p < 0.05). (3) Compared to the CON group, the in situ dry matter disappearance (ISDMD) significantly increased in the MA, CA, and MA + CA groups (p < 0.05). All three treatment groups showed highly significant differences in in situ crude protein disappearance (ISCPD) compared to the CON group (p < 0.01). (4) Good's Coverage for all experimental groups was greater than 0.99, meeting the conditions for subsequent sequencing. Compared to the CON group, the Shannon index significantly increased in the CA group (p < 0.01), and the Simpson index increased significantly in the MA group (p < 0.05). However, there was no significant difference in the Chao index among the three treatment groups and the CON group (p > 0.05). At the genus level, the abundance of Lentilactobacillus in the MA, CA, and MA + CA groups was significantly higher than in the control group (p < 0.05). PICRUSt prediction results indicated that the metabolic functional microbial groups in the CA and MA treatment groups were significantly higher than in the CON group (p < 0.05), suggesting that the addition of MA or CA could reduce the loss of nutritional components such as protein and carbohydrates in mixed ensilage. In conclusion, the addition of malic acid and citric acid to a mixture of apple pomace and corn protein powder during ensiling reduces nutritional losses, improves fermentation quality and rumen degradation rate, enhances the diversity of the microbial community in ensiled feed, and improves microbial structure. The combined addition of malic acid and citric acid demonstrates a superior effect.

6.
BMC Pulm Med ; 24(1): 225, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724980

ABSTRACT

OBJECTIVE: To explore the potential association between dietary live microbes and the prevalence of Chronic Obstructive Pulmonary Diseases (COPD). METHODS: In this cross-sectional study, data of 9791 participants aged 20 years or older in this study were collected from the National Health and Nutrition Examination Survey (NHANES) between 2013 and 2018. Participants in this study were classified into three groups according to the Sanders' dietary live microbe classification system: low, medium, and high dietary live microbe groups. COPD was defined by a combination of self-reported physician diagnoses and standardized medical status questionnaires. Logistic regression and subgroup analysis were used to assess whether dietary live microbes were associated with the risk of COPD. RESULTS: Through full adjustment for confounders, participants in the high dietary live microbe group had a low prevalence of COPD in contrast to those in low dietary live microbe group (OR: 0.614, 95% CI: 0.474-0.795, and p < 0.001), but no significant association with COPD was detected in the medium and the low dietary live microbe groups. This inverse relationship between dietary live microbe intake and COPD prevalence was more inclined to occur in smokers, females, participants aged from 40 to 59 years old and non-obese participants. CONCLUSION: A high dietary live microbe intake was associated with a low prevalence of COPD, and this negative correlation was detected especially in smokers, females, participants aged from 40 to 59 years old and non-obese participants.


Subject(s)
Nutrition Surveys , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/epidemiology , Cross-Sectional Studies , Female , Male , Middle Aged , Adult , Prevalence , Diet/statistics & numerical data , Aged , Logistic Models , United States/epidemiology , Risk Factors , Young Adult , Smoking/epidemiology
7.
Arch Toxicol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811393

ABSTRACT

Assessing the association between candidate single-nucleotide polymorphisms (SNPs) identified by multi-omics approaches and susceptibility to silicosis. RNA-seq analysis was performed to screen the differentially expressed mRNAs in the fibrotic lung tissues of mice exposed to silica particles. Following this, we integrated the SNPs located in the above human homologenes with the silicosis-related genome-wide association study (GWAS) data to select the candidate SNPs. Then, expression quantitative trait locus (eQTL)-SNPs were identified by the GTEx database. Next, we validated the associations between the functional eQTL-SNPs and silicosis susceptibility by additional case-control study. And the contribution of the identified SNP and its host gene in the fibrosis process was further validated by functional experiments. A total of 12 eQTL-SNPs were identified in the screening stage. The results of the validation stage suggested that the variant T allele of rs419540 located in IL12RB1 significantly increased the risk of developing silicosis [additive model: odds ratio (OR) = 1.78, 95% confidence interval (CI) 1.11-2.85, P = 0.017]. Furthermore, the combination of GWAS and the results of validation stage also indicated that the variant T allele of rs419540 in IL12RB1 was associated with increased silicosis risk (additive model: OR = 2.07, 95% CI 1.38-3.12, P < 0.001). Additionally, after knockdown or overexpression of IL12RB1, the levels of pro-inflammatory factors, such as IL-12, IFN-γ, and other pro-inflammatory factors, were correspondingly decreased or increased. The novel eQTL-SNP, rs419540, might increase the risk of silicosis by modulating the expression levels of IL12RB1.

8.
Sci Rep ; 14(1): 11630, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773115

ABSTRACT

The Jishishan Ms 6.2 earthquake occurred at 23:59 on December 18, 2023 in Gansu Province, China. We conducted a field survey to assess the hazards and damages caused by the earthquake and its associated geo-activities. Subsequently, we organized a seminar to discuss the possible causes of the destruction of a prehistoric site-Lajia Settlement-dated back to four thousand years B.P. and located only several kilometers away from the epicenter of the Jishishan earthquake. The Jishishan earthquake was unique for its hazard and disaster process, which featured ground shaking and a series of complex geological and geomorphological activities: sediment and soil spray piles, liquefaction, collapse, landslide, and mudflow along water channels. We define this phenomenon as the Jishishan earthquake ripple hazard (JERH). The most recent evidence from the JERH suggests that a prehistoric earthquake similar to the JERH, instead of riverine floods or earthquake-induced landslide dam outburst flood, as previously hypothesized, destroyed the Lajia Settlement.

9.
Trials ; 25(1): 306, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715042

ABSTRACT

BACKGROUND: Premature infants commonly encounter difficulties with oral feeding, a complication that extends hospital stays, affects infants' quality of life, and imposes substantial burdens on families and society. Enhancing preterm infants' oral feeding skills and facilitating their transition from parenteral or nasal feeding to full oral feeding pose challenges for neonatal intensive care unit (NICU) healthcare professionals. Research indicates that oral motor interventions (OMIs) can enhance preterm infants' oral feeding capabilities and expedite the transition from feeding initiation to full oral feeding. Nonetheless, the most suitable timing for commencing these interventions remains uncertain. METHODS: This is a single-blind, randomized controlled trial. Preterm with a gestational age between 29+0 to 34+6 weeks will be eligible for the study. These infants will be randomized and allocated to one of two groups, both of which will receive the OMIs. The intervention commences once the infant begins milk intake during the early OMIs. Additionally, in the late OMIs group, the intervention will initiate 48 h after discontinuing nasal continuous positive airway pressure. DISCUSSION: OMIs encompass non-nutritive sucking and artificial oral stimulation techniques. These techniques target the lips, jaw, muscles, or tongue of premature infants, aiming to facilitate the shift from tube feeding to oral feeding. The primary objective is to determine the ideal intervention timing that fosters the development of oral feeding skills and ensures a seamless transition from parenteral or nasal feeding to full oral feeding among preterm infants. Furthermore, this study might yield insights into the long-term effects of OMIs on the growth and neurodevelopmental outcomes of preterm infants. Such insights could bear substantial significance for the quality of survival among preterm infants and the societal burden imposed by preterm birth. TRIAL REGISTRATION: chictr.org.cn ChiCTR2300076721. Registered on October 17, 2023.


Subject(s)
Infant, Premature , Randomized Controlled Trials as Topic , Sucking Behavior , Humans , Infant, Newborn , Single-Blind Method , Time Factors , Gestational Age , Treatment Outcome , Intensive Care Units, Neonatal , Feeding Behavior , Female , Child Development
10.
Infect Drug Resist ; 17: 2031-2041, 2024.
Article in English | MEDLINE | ID: mdl-38803520

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a predominant nosocomial infection-causing bacteria. The aim of this study was to develop a novel single-bacteria multiplex digital PCR assays (SMD-PCR), which is capable of simultaneously detecting and discriminating Methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA. This protocol employed TaqMan probes to detect SAOUHSC_00106 and mecA genes, with the latter being linked to methicillin resistance. A total of 72 samples from various specimen types were evaluated. The accuracy rates for the sputum samples, pus samples, swab samples, ear secretion samples, and catheter samples were 94.44%, 100%, 92%, 100%, and 100%, respectively. Our results showed that the clinical practicability of SMD-PCR has applicability to the rapid detection of MRSA without DNA extraction or bacterial culture, and can be utilized for the rapid detection of Staphylococcus aureus and the timely identification of MRSA in clinical samples, thereby providing an advanced platform for the rapid diagnosis of clinical MRSA infection.

11.
Int J Chron Obstruct Pulmon Dis ; 19: 1093-1103, 2024.
Article in English | MEDLINE | ID: mdl-38800522

ABSTRACT

Purpose: Whether Internet of Things (IoT)-based home respiratory muscle training (RMT) benefits patients with comorbid chronic obstructive pulmonary disease (COPD) remains unclear. Therefore, this study aims to evaluate the effectiveness of IoT-based home RMT for patients with COPD. Patients and Methods: Seventy-eight patients with stable COPD were randomly divided into two groups. The control group received routine health education, while the intervention group received IoT-based home RMT (30 inspiratory muscle training [IMT] and 30 expiratory muscle training [EMT] in different respiratory cycles twice daily for 12 consecutive weeks). Assessments took place pre-intervention and 12 weeks post-intervention, including lung function tests, respiratory muscle strength tests, the mMRC dyspnea scale, CAT questionnaires, the HAMA scale, and 6-month COPD-related readmission after intervention. Results: Seventy-four patients with COPD were analyzed (intervention group = 38, control group = 36), and the mean age and FEV1 of the patients were 68.65 ± 7.40 years, 1.21 ± 0.54 L. Compared to those of the control population, the intervention group exhibited higher FEV1/FVC (48.23 ± 10.97 vs 54.32 ± 10.31, p = 0.016), MIP (41.72 ± 7.70 vs 47.82 ± 10.99, p = 0.008), and MEP (42.94 ± 7.85 vs 50.29 ± 15.74, p = 0.013); lower mMRC (2.00 [2.00-3.00] vs 1.50 [1.00-2.00], p < 0.001), CAT (17.00 [12.00-21.75] vs 11.00 [9.00-13.25], p < 0.001), and HAMA (7.00 [5.00-9.00] vs 2.00 [1.00-3.00], p < 0.001) scores; and a lower incidence rate of 6-month readmission (22% vs 5%, p = 0.033). Conclusion: Compared with no intervention, IoT-based home RMT may be a more beneficial intervention for patients with COPD.


Subject(s)
Breathing Exercises , Lung , Pulmonary Disease, Chronic Obstructive , Recovery of Function , Respiratory Muscles , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Male , Female , Aged , Breathing Exercises/methods , Middle Aged , Treatment Outcome , Lung/physiopathology , Time Factors , Respiratory Muscles/physiopathology , Forced Expiratory Volume , Exercise Tolerance , Muscle Strength , Home Care Services , Patient Readmission , Patient Education as Topic/methods , Internet-Based Intervention , Vital Capacity
12.
Respir Res ; 25(1): 174, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643159

ABSTRACT

BACKGROUND: Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. METHODS: Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. RESULTS: The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. CONCLUSION: The findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.Key words ACO, Asthma, COPD, Macrophages, Senescence, PPARγ.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Aged , PPAR gamma , Macrophages, Alveolar/metabolism , Cohort Studies , Asthma/epidemiology , Cellular Senescence
13.
Transplantation ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685203

ABSTRACT

BACKGROUND: This study aimed to investigate the cardioprotective effect of exosomes derived from human umbilical cord mesenchymal stem cells on donation after circulatory death (DCD) hearts preserved with normothermic ex vivo heart perfusion (EVHP) in a rat heart transplantation model. METHODS: Thirty-two male Lewis rats were divided into 2 groups: the control group and the exosome group. The donor-heart rats were subjected to the DCD procedure by suffering a 15-min warm ischemia injury, subsequently preserved with EVHP for 90 min, and then transplanted into recipients via abdominal heterotopic heart transplantation. Vehicle or exosome was added into the perfusate of normothermic EVHP in the control or exosome group. We evaluated left ventricular graft function, myocardial inflammation, and myocardial apoptosis of the donor heart 1.5 h after heart transplantation. Furthermore, we investigate the alternation of myocardial gene expression in the donor hearts between both groups by transcriptome sequencing. RESULTS: The treatment with exosome significantly enhanced cardiac function through increasing left ventricular developed pressure, dp/dtmax, and dp/dtmin of DCD hearts at 90 min after heart transplantation compared with the control group. The myocardial cells in the exosome group exhibited an orderly arrangement without obvious edema. Furthermore, exosome added into perfusate in the exosome group significantly attenuated the level of inflammatory response and apoptosis. Transcriptome sequencing and RT-qPCR showed the phosphoinositide 3-kinase/protein kinase B pathway was activated after exosome treatment. CONCLUSIONS: Normothermic EVHP combined with exosome can be a promising and novel DCD heart preservation strategy, alleviating myocardial ischemia-reperfusion injury in the DCD heart.

14.
BMC Cancer ; 24(1): 507, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654231

ABSTRACT

BACKGROUND: Circulating tumor cell (CTC) clusters play a critical role in carcinoma metastasis. However, the rarity of CTC clusters and the limitations of capture techniques have retarded the research progress. In vitro CTC clusters model can help to further understand the biological properties of CTC clusters and their clinical significance. Therefore, it is necessary to establish reliable in vitro methodological models to form CTC clusters whose biological characteristics are very similar to clinical CTC clusters. METHODS: The assays of immunofluorescence, transmission electron microscopy, EdU incorporation, cell adhension and microfluidic chips were used. The experimental metastasis model in mice was used. RESULTS: We systematically optimized the culture methods to form in vitro CTC clusters model, and more importantly, evaluated it with reference to the biological capabilities of reported clinical CTC clusters. In vitro CTC clusters exhibited a high degree of similarity to the reported pathological characteristics of CTC clusters isolated from patients at different stages of tumor metastasis, including the appearance morphology, size, adhesive and tight junctions-associated proteins, and other indicators of CTC clusters. Furthermore, in vivo experiments also demonstrated that the CTC clusters had an enhanced ability to grow and metastasize compared to single CTC. CONCLUSIONS: The study provides a reliable model to help to obtain comparatively stable and qualified CTC clusters in vitro, propelling the studies on tumor metastasis.


Subject(s)
Breast Neoplasms , Cell Culture Techniques , Neoplastic Cells, Circulating , Neoplastic Cells, Circulating/pathology , Animals , Breast Neoplasms/pathology , Humans , Mice , Female , Cell Culture Techniques/methods , Cell Line, Tumor , Neoplasm Metastasis
15.
Environ Res ; 252(Pt 2): 118821, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615793

ABSTRACT

How microzooplanktonic ciliate adaptative strategies differ across diatom bloom and non-diatom bloom areas in the Arctic Ocean remains poorly documented. To address this gap, two different situations were categorized in the Arctic Ocean at summer 2023: diatom bloom stations (DBS) (genus Thalassiosira, chain-like) and non-diatom bloom stations (nDBS). Total abundance of ciliate at 3 m and 25 m in DBS was 2.8 and 1.8 folds higher than in nDBS, respectively. Aloricate ciliates were singled out in both DBS and nDBS, whilst their average abundance and biomass of large size-fraction (>50 µm) in former were 4.5-5.6 folds higher than in latter. Regarding tintinnids, high abundance of Ptychocylis acuta (Bering Strait species) mainly occurred at DBS, coupled with distribution of co-occurring Pacific-origin species Salpingella sp.1, collectively suggested a strong intrusion of Pacific Inflow during summer 2023. Additionally, presence of high abundance of Acanthostomella norvegica and genus Parafavella in nDBS might indicate the trajectory of the Transpolar Drift. Alternatively, tintinnids can serve as credible bioindicators for either monitoring currents or evaluating microzooplankton Borealization. Average abundance of total ciliate within 15-135 µm body-size spectrum in DBS was higher than nDBS. Moreover, spearman's rank correlation between biotic and abiotic analysis revealed that temperature and dissolved oxygen at DBS determined tintinnid species richness and ciliate total abundance, respectively. The results clearly demonstrate that remarkable divergences in large size-fraction of ciliate abundance between DBS and nDBS validate their irreplaceable role in controlling phytoplankton outbreak and associated biological processes in polar seas.


Subject(s)
Ciliophora , Diatoms , Arctic Regions , Ciliophora/physiology , Diatoms/physiology , Eutrophication , Zooplankton/physiology , Animals , Oceans and Seas , Body Size , Seawater/chemistry
16.
Cell Signal ; 120: 111190, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670474

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is potentially fatal, and as society ages, its effects on human health are predicted to deteriorate. The potential function of m6A modifications within COPD has become a hot topic recently. This study was conducted to clarify the function and related mechanisms of the m6A methylation transferase ZC3H13 in COPD. The expression of m6A-associated protease and ITGA6 in COPD tissues was assessed using GEO data, qRT-PCR, and western blot. COPD models in cells and mice were established through cigarette smoke extract (CSE) and smoke exposure. Inflammatory marker levels were measured by ELISA, apoptosis by flow cytometry, and mRNA stability with Actinomycin D assay. m6A modification levels were checked by MeRIP-PCR. HE and Masson staining evaluated lung pathology, and alveolar lavage fluid analysis included total cell count and Giemsa staining. ZC3H13 and METTL3 were differentially expressed m6A regulators in COPD, with ZC3H13 being more significantly upregulated. Further analysis revealed the ZC3H13 expression-related differentially expressed genes (DEGs) functions were enriched in the immunoinflammatory pathway, indicating ZC3H13's involvement in COPD pathogenesis through inflammation, and immune responses. Knockdown studies in cellular and mouse models demonstrated ZC3H13's role in exacerbating COPD symptoms, including inflammation, apoptosis, and EMT, and its suppression led to significant improvements. The identification of ITGA6 as a target gene further elucidated the mechanism, showing that ZC3H13 enhances ITGA6 expression and mRNA stability through m6A modification, influencing bronchial epithelial cell inflammation and fibrosis. In conclusion, targeting ZC3H13/ITGA6 could be an underlying therapeutic approach for treating COPD.

17.
J Clin Lab Anal ; 38(8): e25025, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38563451

ABSTRACT

OBJECTIVE: This study aimed to indicate whether a declined plasma concentration of valproic acid (VPA) induced by co-administration of meropenem (MEPM) could affect the antiepileptic efficacy of VPA. METHODS: We retrospectively reviewed data of hospitalized patients who were diagnosed with status epilepticus or epilepsy between 2010 and 2019. Patients co-administered VPA and MEPM during hospitalization were screened and assigned to the exposure group, while those co-administerd VPA and other broad-spectrum antibiotics were allocated to the control group. RESULTS: The exposure group and control group included 50 and 11 patients, respectively. With a similar dosage of VPA, the plasma concentration of VPA significantly decreased during co-administration (24.6 ± 4.3 µg/mL) compared with that before co-administration (88.8 ± 13.6 µg/mL, p < 0.0001), and it was partly recovered with the termination of co-administration (39.8 ± 13.2 µg/mL, p = 0.163) in the exposure group. The inverse probability of treatment weighting estimated the treatment efficacy via changes in seizure frequency, seizure duration, and concomitant use of antiepileptic drugs, which were not significantly different between the exposure and control groups. In the exposure group, there was no significant differences in seizure frequency between the periods of before-during and before-after (p = 0.074 and 0.153, respectively). Seizure duration during VPA-MEPM co-administration was not significantly different from that before co-administration (p = 0.291). CONCLUSIONS: In this study, the reduced plasma concentration of VPA induced by the co-administration of MEPM did not affect the antiepileptic efficacy of VPA. This conclusion should be interpreted with caution, and more research is warranted. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2000034567. Registered on 10 July 2020.


Subject(s)
Anticonvulsants , Epilepsy , Meropenem , Valproic Acid , Humans , Valproic Acid/blood , Valproic Acid/therapeutic use , Valproic Acid/administration & dosage , Anticonvulsants/blood , Anticonvulsants/therapeutic use , Meropenem/blood , Meropenem/administration & dosage , Male , Female , Middle Aged , Retrospective Studies , Adult , Aged , Epilepsy/drug therapy , Epilepsy/blood , Drug Interactions , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/administration & dosage , Treatment Outcome
18.
Chin Med ; 19(1): 45, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454519

ABSTRACT

BACKGROUND: Cutaneous melanoma is a kind of skin malignancy with low morbidity but high mortality. Cryptotanshinone (CPT), an important component of salvia miltiorrhiza has potent anti-tumor activity and also indicates therapeutic effect on dermatosis. So we thought that CPT maybe a potential agent for therapy of cutaneous melanoma. METHODS: B16F10 and A375 melanoma cells were used for in vitro assay. Tumor graft models were made in C57BL/6N and BALB/c nude mice for in vivo assay. Seahorse XF Glycolysis Stress Test Kit was used to detect extracellular acidification rate and oxygen consumption rate. Si-RNAs were used for knocking down adenosine monophosphate-activated protein kinase (AMPK) expression in melanoma cells. RESULTS: CPT could inhibit the proliferation of melanoma cells. Meanwhile, CPT changed the glucose metabolism and inhibited phosphofructokinase (PFK)-mediated glycolysis in melanoma cells to a certain extent. Importantly, CPT activated AMPK and inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Both AMPK inhibitor and silencing AMPK could partially reverse CPT's effect on cell proliferation, cell apoptosis and glycolysis. Finally, in vivo experimental data demonstrated that CPT blocked the growth of melanoma, in which was dependent on the glycolysis-mediated cell proliferation. CONCLUSIONS: CPT activated AMPK and then inhibited PFK-mediated aerobic glycolysis leading to inhibition of growth of cutaneous melanoma. CPT should be a promising anti-melanoma agent for clinical melanoma therapy.

19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 289-293, 2024 Mar 10.
Article in Chinese | MEDLINE | ID: mdl-38448016

ABSTRACT

OBJECTIVE: To explore the clinical features and genetic variants in three children suspected for ß-ketothiolase deficiency (BKTD). METHODS: Clinical manifestations, laboratory examination and genetic testing of three children suspected for BKTD at Henan Children's Hospital between January 2018 and October 2022 were collected, and their clinical and genetic variants were retrospectively analyzed. RESULTS: The children were all males with a age from 7 to 11 months. Their clinical manifestations have included poor spirit, shortness of breath, vomiting, convulsions after traumatic stress and/or infection. All of them had severe metabolic acidosis, elevated ketone bodies in blood and urine, hypoglycemia, with increased isoprenyl-carnitine and 3-hydroxyisovalyl-carnitine in the blood, and 2-methyl-3-hydroxybutyrate and methylprotaroyl glycine in the urine. All of them were found to harbor compound heterozygous variants of the ACAT1 gene, including c.1183G>T and a large fragment deletion (11q22.3-11q23.1) in child 1, c.121-3C>G and c.826+5_826+9delGTGTT in child 2, and c.928G>C and c.1142T>C in child 3. The variants harbored by children 2 and 3 were known to be pathogenic or likely pathogenic. The heterozygous c.1183G>T variant in child 1 was unreported previously and rated as a variant of unknown significance (PM2_Supporting+PP3+PP4) based on guidelines from the American College of Medical Genetics and Genomics. The large segment deletion in 11q22.3-11q23.1 has not been included in the DGV Database and was rated as a pathogenic copy number variation. CONCLUSION: The variants of the ACAT1 gene probably underlay the pathogenesis of BKTD in these three children.


Subject(s)
Acetyl-CoA C-Acyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors , DNA Copy Number Variations , Child , Male , Humans , Infant , Retrospective Studies , Amino Acid Metabolism, Inborn Errors/genetics , Carnitine
20.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38546324

ABSTRACT

Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields.


Subject(s)
Biomedical Research , Microbiota , Benchmarking , Databases, Factual , Metabolome
SELECTION OF CITATIONS
SEARCH DETAIL
...