Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1158652, 2023.
Article in English | MEDLINE | ID: mdl-37152739

ABSTRACT

Many synbiotics are effective for the prevention and treatment of type 2 diabetes mellitus (T2DM). In the treatment of T2DM, synbiotics often regulate the composition of intestinal flora, which autoinducer-2 (AI-2) may play an important role. Whether the changes of intestinal flora are related to AI-2 during synbiotics treatment of T2DM is a topic worth studying. We elucidated the effects of synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 (SML) on T2DM rats. Male Spraque-Dawley rats were injected intraperitoneally with streptozotocin (STZ) and randomly grouped. After that, biochemical parameters, intestinal flora, fecal AI-2, and intestinal colonization of L. reuteri were detected. The results showed that SML had a hypoglycemic effect and mitigated the organ lesions of the liver and pancreas. Also, SML regulated biochemical parameters such as short chain fatty acids (SCFAs), lipopolysaccharides (LPS), intercellular cell adhesion molecule-1 (ICAM-1), and tumor necrosis factor-α (TNF-α). On the other hand, the proportion of probiotics, such as Lactobacillus acidophilus, L. reuteri, Bifidobacterium pseudolongum, Lactobacillus murinus, and Lactobacillus johnsonii, were elevated by the treatment of SML. In addition, SML promoted the colonization and proliferation of L. reuteri in the gut. Another thing to consider was that AI-2 was positively correlated with the total number of OTUs sequences and SML boosted AI-2 in the gut. Taken together, these results supported that SML may modulate intestinal flora through AI-2 to treat T2DM. This study provided a novel alternative strategy for the treatment of T2DM in future.

2.
Biomed Pharmacother ; 147: 112521, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35149360

ABSTRACT

The rapid proliferation and colonization of probiotics in the intestines are essential for human health. Quorum sensing (QS) is a communication mechanism among bacteria, which can regulate various bacterial crowd behavior. This study aimed to enhance the viability of Lactobacillus reuteri 1-12 by regulating QS. Herein, we built a database containing 72 natural products (previously reported) that can improve intestinal flora. Virtual screening (VS) was subsequently conducted to screen four potential active compounds. After that, molecular docking was conducted to analyze the binding mode of the four natural products to S-Ribosylhomocysteinase (LuxS). The results showed that norathyriol, mangiferin, baicalein, and kaempferol had good binding ability to LuxS. The validation experiment showed that norathyriol, mangiferin, baicalein, and kaempferol could inhibit the production of autoinducer-2 (AI-2). Moreover, mangiferin significantly increased L. reuteri 1-12 biomass and promoted L. reuteri 1-12 biofilm formation and structure. Besides, only mangiferin inhibited luxS expression, thus increasing L. reuteri 1-12 biomass. This research indicated that mangiferin may be a potential inhibitor of LuxS, promoting the probiotic properties of L. reuteri and human health.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Carbon-Sulfur Lyases/antagonists & inhibitors , Limosilactobacillus reuteri , Probiotics/therapeutic use , Xanthones/therapeutic use , Biological Products , Humans , Molecular Docking Simulation , Phytotherapy , Probiotics/chemistry , Xanthones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...