Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Inorg Chem ; 63(15): 7053-7062, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38575504

ABSTRACT

Low-dimensional organic-inorganic hybrid perovskites (OIHPs) have shown significant potential in the optoelectronic field due to their adjustable structure and properties. However, the poor air stability and flexibility of the OIHP crystals limit their further development. Herein, three OIHP crystals have been synthesized using cadmium chloride and the isomer of phenylenediamine as raw materials. Mn2+ doping turns on the red-light emission of Cd-based OIHPs at around 625 nm. Interestingly, the organic ligands with different steric hindrance can induce a transition of the OIHP structure from two dimensions (2D) to one dimension (1D), thereby regulating the quantum yield of red luminescence in the range of 38.4% to nearly 100%. It is found that the surface-exposed amino groups are easy to oxidize, resulting in the instability of these OIHP crystals. Therefore, poly(lactic acid) (PLA) is selected to passivate OIHPs through hydrogen bonding between C═O of PLA and -NH2 on the surface of OIHPs. As a result, the production of OIHP-based flexible films with highly efficient and stable red emission can be obtained after being encapsulated by PLA. They demonstrate enormous application potential in flexible X-ray imaging. This study not only realizes stable perovskite films but also provides an effective design idea for red flexible scintillators.

2.
Chem Asian J ; 19(11): e202400268, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578217

ABSTRACT

Photodynamic therapy (PDT) as an emerging therapeutic method has drawn much attention in the treatment field for cancer. Photosensitizer, which can convert photon energy into cytotoxic species under light irradiation, is the core component in PDT. The design of photosensitizers still faces problems of light absorption, targeting, penetration and oxygen dependence. With the rapid progress of material science, various photosensitizers have been developed to produce cytotoxic species for treatment of tumor with high selectivity, safety, and noninvasiveness. Besides, the applications of photosensitizers have been expanded to diverse cancer treatments such as drug release, optogenetics and immune checkpoint blockade. In this review, we summarize the recent advances of photosensitizers in various therapeutic methods for cancer. Prevailing challenges and further prospects associated with photosensitizers are also discussed.


Subject(s)
Neoplasms , Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Humans , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Light , Animals
3.
Angew Chem Int Ed Engl ; 63(25): e202404177, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38634766

ABSTRACT

Long-lasting radioluminescence scintillators have recently attracted substantial attention from both research and industrial communities, primarily due to their distinctive capabilities of converting and storing X-ray energy. However, determination of energy-conversion kinetics in these nanocrystals remains unexplored. Here we present a strategy to probe and unveil energy-funneling kinetics in NaLuF4:Mn2+/Gd3+ nanocrystal sublattices through Gd3+-driven microenvironment engineering and Mn2+-mediated radioluminescence profiling. Our photophysical studies reveal effective control of energy-funneling kinetics and demonstrate the tunability of electron trap depth ranging from 0.66 to 0.96 eV, with the corresponding trap density varying between 2.38×105 and 1.34×107 cm-3. This enables controlled release of captured electrons over durations spanning from seconds to 30 days. It allows tailorable emission wavelength within the range of 520-580 nm and fine-tuning of thermally-stimulated temperature between 313-403 K. We further utilize these scintillators to fabricate high-density, large-area scintillation screens that exhibit a 6-fold improvement in X-ray sensitivity, 22 lp/mm high-resolution X-ray imaging, and a 30-day-long optical memory. This enables high-contrast imaging of injured mice through fast thermally-stimulated radioluminescence readout. These findings offer new insights into the correlation of radioluminescence dynamics with energy-funneling kinetics, thereby contributing to the advancement of high-energy nanophotonic applications.

4.
Angew Chem Int Ed Engl ; 63(3): e202316190, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38009958

ABSTRACT

With the increasing demands of X-ray detection and medical diagnosis, organic scintillators with intense and tunable X-ray excited emission have been becoming important. To guarantee the X-ray absorption, heavy atoms were widely added in reported organic scintillators, which led to emission quenching. In this work, we propose a new strategy to realize organic scintillators through the host-guest doping strategy. Then the X-ray absorption centers (host) and emission centers (guest) are separated. Under X-ray excitation, these materials displayed intense and readily tunable emissions ranging from green (520 nm) to near infrared (NIR) regions (682 nm). Besides, the relationship between the X-ray absorption and spatial arrangement of the heavy atoms in the host matrix was also revealed. The potential application of these wide-range color tunable organic host-guest scintillators in X-ray imaging were demonstrated. This work provides a new feasible strategy for constructing high-performance organic scintillators with tunable luminescence properties.

5.
Adv Mater ; 35(52): e2309413, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37950585

ABSTRACT

X-ray imaging plays an increasingly crucial role in clinical radiography, industrial inspection, and military applications. However, current X-ray imaging technologies have difficulty in protecting against information leakage caused by brute force attacks via trial-and-error. Here high-confidentiality X-ray imaging encryption by fabricating ultralong radioluminescence memory films composed of lanthanide-activated nanoscintillators (NaLuF4 : Gd3+ or Ce3+ ) with imperceptible purely-ultraviolet (UV) emission is reported. Mechanistic investigations unveil that ultralong X-ray memory is attributed to the long-lived trapping of thermalized charge carriers within Frenkel defect states and subsequent slow release in the form of imperceptible radioluminescence. The encrypted X-ray imaging can be securely stored in the memory film for more than 7 days and optically decoded by perovskite nanocrystal. Importantly, this encryption strategy can protect X-ray imaging information against brute force trial-and-error attacks through the perception of lifetime change in the persistent radioluminescence. It is further demonstrated that the as-fabricated flexible memory film enables achieving of 3D X-ray imaging encryption of curved objects with a high spatial resolution of 20 lp/mm and excellent recyclability. This study provides valuable insights into the fundamental understanding of X-ray-to-UV conversion in nanocrystal lattices and opens up a new avenue toward the development of high-confidential 3D X-ray imaging encryption technologies.

6.
ACS Cent Sci ; 9(7): 1419-1426, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37521783

ABSTRACT

X-ray scintillators are widely used in medical imaging, industrial flaw detection, security inspection, and space exploration. However, traditional commercial scintillators are usually associated with a high use cost because of their substantial toxicity and easy deliquescence. In this work, an atomically precise Au-Cu cluster scintillator (1) with a thermally activated delayed fluorescence (TADF) property was facilely synthesized, which is environmentally friendly and highly stable to water and oxygen. The TADF property of 1 endows it with an ultrahigh exciton utilization rate. Combined with the effective absorption of X-ray caused by the heavy-atom effect and a limited nonradiative transition caused by close packing in the crystal state, 1 exhibits an excellent radioluminescence property. Moreover, 1 has good processability for fabricating a large, flexible thin-film device (10 cm × 10 cm) for high-resolution X-ray imaging, which can reach 40 µm (12.5 LP mm-1). The properties mentioned earlier make the coinage metal cluster promising for use as a substitute for traditional commercial scintillators.

7.
Nat Commun ; 14(1): 2901, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37217534

ABSTRACT

Luminescence clusters composed of organic ligands and metals have gained significant interests as scintillators owing to their great potential in high X-ray absorption, customizable radioluminescence, and solution processability at low temperatures. However, X-ray luminescence efficiency in clusters is primarily governed by the competition between radiative states from organic ligands and nonradiative cluster-centered charge transfer. Here we report that a class of Cu4I4 cubes exhibit highly emissive radioluminescence in response to X-ray irradiation through functionalizing biphosphine ligands with acridine. Mechanistic studies show that these clusters can efficiently absorb radiation ionization to generate electron-hole pairs and transfer them to ligands during thermalization for efficient radioluminescence through precise control over intramolecular charge transfer. Our experimental results indicate that copper/iodine-to-ligand and intraligand charge transfer states are predominant in radiative processes. We demonstrate that photoluminescence and electroluminescence quantum efficiencies of the clusters reach 95% and 25.6%, with the assistance of external triplet-to-singlet conversion by a thermally activated delayed fluorescence matrix. We further show the utility of the Cu4I4 scintillators in achieving a lowest X-ray detection limit of 77 nGy s-1 and a high X-ray imaging resolution of 12 line pairs per millimeter. Our study offers insights into universal luminescent mechanism and ligand engineering of cluster scintillators.

8.
Research (Wash D C) ; 6: 0090, 2023.
Article in English | MEDLINE | ID: mdl-37000186

ABSTRACT

Organic scintillators, materials with the ability to exhibit luminescence when exposed to X-rays, have aroused increasing interest in recent years. However, the enhancement of radioluminescence and improving X-ray absorption of organic scintillators lie in the inherent dilemma, due to the waste of triplet excitons and weak X-ray absorption during scintillation. Here, we employ halogenated thermally activated delayed fluorescence materials to improve the triplet exciton utilization and X-ray absorption simultaneously, generating efficient scintillation with a low detection limit, which is one order of magnitude lower than the dosage for X-ray medical diagnostics. Through experimental study and theoretical calculation, we reveal the positive role of X-ray absorption, quantum yields of prompt fluorescence, and intersystem crossing in promoting the radioluminescence intensity. This finding offers an opportunity to design diverse types of organic scintillators and expands the applications of thermally activated delayed fluorescence.

9.
Adv Mater ; 35(16): e2209279, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36738101

ABSTRACT

Self-assembly of nanocrystals into superlattices is a fascinating process that not only changes geometric morphology, but also creates unique properties that considerably enrich the material toolbox for new applications. Numerous studies have driven the blossoming of superlattices from various aspects. These include precise control of size and morphology, enhancement of properties, exploitation of functions, and integration of the material into miniature devices. The effective synthesis of metal-halide perovskite nanocrystals has advanced research on self-assembly of building blocks into micrometer-sized superlattices. More importantly, these materials exhibit abundant optical features, including highly coherent superfluorescence, amplified spontaneous laser emission, and adjustable spectral redshift, facilitating basic research and state-of-the-art applications. This review summarizes recent advances in the field of metal-halide perovskite superlattices. It begins with basic packing models and introduces various stacking configurations of superlattices. The potential of multiple capping ligands is also discussed and their crucial role in superlattice growth is highlighted, followed by detailed reviews of synthesis and characterization methods. How these optical features can be distinguished and present contemporary applications is then considered. This review concludes with a list of unanswered questions and an outlook on their potential use in quantum computing and quantum communications to stimulate further research in this area.

11.
Acc Chem Res ; 56(1): 37-51, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36533853

ABSTRACT

X-ray luminescence is an optical phenomenon in which chemical compounds known as scintillators can emit short-wavelength light upon the excitation of X-ray photons. Since X-rays exhibit well-recognized advantages of deep penetration toward tissues and a minimal autofluorescence background in biological samples, X-ray luminescence has been increasingly becoming a promising optical tool for tackling the challenges in the fields of imaging, biosensing, and theragnostics. In recent years, the emergence of nanocrystal scintillators have further expanded the application scenarios of X-ray luminescence, such as high-resolution X-ray imaging, autofluorescence-free detection of biomarkers, and noninvasive phototherapy in deep tissues. Meanwhile, X-ray luminescence holds great promise in breaking the depth dependency of deep-seated lesion treatment and achieving synergistic radiotherapy with phototherapy.In this Account, we provide an overview of recent advances in developing advanced X-ray luminescence for applications in imaging, biosensing, theragnostics, and optogenetics neuromodulation. We first introduce solution-processed lead halide all-inorganic perovskite nanocrystal scintillators that are able to convert X-ray photons to multicolor X-ray luminescence. We have developed a perovskite nanoscintillator-based X-ray detector for high-resolution X-ray imaging of the internal structure of electronic circuits and biological samples. We further advanced the development of flexible X-ray luminescence imaging using solution-processable lanthanide-doped nanoscintillators featuring long-lived X-ray luminescence to image three-dimensional irregularly shaped objects. We also outline the general principles of high-contrast in vivo X-ray luminescence imaging which combines nanoscintillators with functional biomolecules such as aptamers, peptides, and antibodies. High-quality X-ray luminescence nanoprobes were engineered to achieve the high-sensitivity detection of various biomarkers, which enabled the avoidance of interference from the biological matrix autofluorescence and photon scattering. By marrying X-ray luminescence probes with stimuli-responsive materials, multifunctional theragnostic nanosystems were constructed for on-demand synergistic gas radiotherapy with excellent therapeutic effects. By taking advantage of the capability of X-rays to penetrate the skull, we also demonstrated the development of controllable, wireless optogenetic neuromodulation using X-ray luminescence probes while obviating damage from traditional optical fibers. Furthermore, we discussed in detail some challenges and future development of X-ray luminescence in terms of scintillator synthesis and surface modification, mechanism studies, and their other potential applications to provide useful guidance for further advancing the development of X-ray luminescence.


Subject(s)
Luminescence , X-Rays , Biomarkers , Diagnostic Imaging , Biosensing Techniques , Molecular Diagnostic Techniques
12.
Acta Biomater ; 155: 635-643, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36328129

ABSTRACT

Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-ß (Aß) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aß oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Here, we report an Aß targeted, low-dose X-ray-excitable long-afterglow scintillator (ScNPs@RB/Ab) for efficient deep-brain phototherapy. We demonstrate that the as-synthesized ScNPs@RB/Ab is capable of converting X-rays into visible light to activate the photosensitizers of rose bengal (RB) for Aß oxygenation through the scalp and skull. We show that the ScNPs@RB/Ab persistently emitting visible luminescence can substantially minimize the risk of excessive X-ray exposure dosage. Importantly, peptide KLVFFAED-functionalized ScNPs@RB/Ab shows a blood-brain barrier permeability. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aß burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects. Our study paves a new pathway to develop high-efficiency transcranial AD phototherapy. STATEMENT OF SIGNIFICANCE: Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-ß (Aß) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aß oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Herein, we report an Aß targeted, low-dose X-ray-excitable long-afterglow scintillators (ScNPs@RB/Ab) for efficient deep-brain phototherapy. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aß burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , X-Rays , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy/methods , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Brain/metabolism , Mice, Transgenic , Disease Models, Animal
13.
Nano Lett ; 22(22): 9045-9053, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36326607

ABSTRACT

Cell temperature monitoring is of great importance to uncover temperature-dependent intracellular events and regulate cellular functions. However, it remains a great challenge to precisely probe the localized temperature status in living cells. Herein, we report a strategy for in situ temperature mapping on an immune cell membrane for the first time, which was achieved by using the lanthanide-doped upconversion nanoparticles. The nanothermometer was designed to label the cell membrane by combining metabolic labeling and click chemistry and can leverage ratiometric upconversion luminescence signals to in situ sensitively monitor temperature variation (1.4% K-1). Moreover, a purpose-built upconversion hyperspectral microscope was utilized to synchronously map temperature changes on T cell membrane and visualize intracellular Ca2+ influx. This strategy was able to identify a suitable temperature status for facilitating thermally stimulated calcium influx in T cells, thus enabling high-efficiency activation of immune cells. Such findings might advance understandings on thermally dependent biological processes and their regulation methodology.


Subject(s)
Lanthanoid Series Elements , Nanoparticles , Thermography , Luminescence , Cell Membrane
14.
Nat Commun ; 13(1): 3995, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810179

ABSTRACT

Scintillators that exhibit X-ray-excited luminescence have great potential in radiation detection, X-ray imaging, radiotherapy, and non-destructive testing. However, most reported scintillators are limited to inorganic or organic crystal materials, which have some obstacles in repeatability and processability. Here we present a facile strategy to achieve the X-ray-excited organic phosphorescent scintillation from amorphous copolymers through the copolymerization of the bromine-substituted chromophores and acrylic acid. These polymeric scintillators exhibit efficient X-ray responsibility and decent phosphorescent quantum yield up to 51.4% under ambient conditions. The universality of the design principle was further confirmed by a series of copolymers with multi-color radioluminescence ranging from green to orange-red. Moreover, we demonstrated their potential application in X-ray radiography. This finding not only outlines a feasible principle to develop X-ray responsive phosphorescent polymers, but also expands the potential applications of polymer materials with phosphorescence features.


Subject(s)
Luminescence , Polymers , Polymerization , Polymers/chemistry , Radiography , X-Rays
15.
Anal Chem ; 94(5): 2641-2647, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35085437

ABSTRACT

Ultrasmall gold nanoclusters (AuNCs) are emerging as promising luminescent nanoprobes for bioimaging due to their fantastic photoluminescence (PL) and renal-clearable ability. However, it remains a great challenge to design them for in vivo sensitive molecular imaging in desired tissues. Herein, we have developed a strategy to tailor the PL and biofate of near-infrared II (NIR-II)-emitting AuNCs via ligand anchoring for improved bioimaging. By optimizing the ligand types in AuNCs and using Er3+-doped lanthanide (Ln) nanoparticles as models, core-satellite Ln@AuNCs assemblies were rationally constructed, which enabled 2.5-fold PL enhancement of AuNCs at 1100 nm and prolonged blood circulation compared to AuNCs. Significantly, Ln@AuNCs with dual intense NIR-II PL (from AuNCs and Er3+) can effectively accumulate in the liver for ratiometric NIR-II imaging of H2S, facilitated by H2S-mediated selective PL quenching of AuNCs. We have then demonstrated the real-time imaging evaluation of liver delivery efficacy and dynamics of two H2S prodrugs. This shows a paradigm to visualize liver H2S delivery and its prodrug screening in vivo. Note that Ln@AuNCs are body-clearable via the hepatobiliary excretion pathway, thus reducing potential long-term toxicity. Such findings may propel the engineering of AuNC nanoprobes for advancing in vivo bioimaging analysis.


Subject(s)
Lanthanoid Series Elements , Metal Nanoparticles , Gold , Luminescence , Optical Imaging
16.
Angew Chem Int Ed Engl ; 60(52): 27195-27200, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34532938

ABSTRACT

There are few reports about purely organic phosphorescence scintillators, and the relationship between molecular structures and radioluminescence in organic scintillators is still unclear. Here, we presented isomerism strategy to study the effect of molecular structures on radioluminescence. The isomers can achieve phosphorescence efficiency of up to 22.8 % by ultraviolet irradiation. Under X-ray irradiation, both m-BA and p-BA show excellent radioluminescence, while o-BA has almost no radioluminescence. Through experimental and theoretical investigation, we found that radioluminescence was not only affected by non-radiation in emissive process, but also highly depended on the material conductivity caused by the different molecular packing. This study not only allows us to clearly understand the relationship between the molecular structures and radioluminescence, but also provides a guidance to rationally design new organic scintillators.

17.
Front Chem ; 9: 682006, 2021.
Article in English | MEDLINE | ID: mdl-33981679

ABSTRACT

Detection of haloalkanes is of great industrial and scientific importance because some haloalkanes are found serious biological and atmospheric issues. The development of a flexible, wearable sensing device for haloalkane assays is highly desired. Here, we develop a paper-based microfluidic sensor to achieve low-cost, high-throughput, and convenient detection of haloalkanes using perovskite nanocrystals as a nanoprobe through anion exchanging. We demonstrate that the CsPbX3 (X = Cl, Br, or I) nanocrystals are selectively and sensitively in response to haloalkanes (CH2Cl2, CH2Br2), and their concentrations can be determined as a function of photoluminescence spectral shifts of perovskite nanocrystals. In particular, an addition of nucleophilic trialkyl phosphines (TOP) or a UV-photon-induced electron transfer from CsPbX3 nanocrystals is responsible for achieving fast sensing of haloalkanes. We further fabricate a paper-based multichannel microfluidic sensor to implement fast colorimetric assays of CH2Cl2 and CH2Br2. We also demonstrate a direct experimental observation on chemical kinetics of anion exchanging in lead-halide perovskite nanocrystals using a slow solvent diffusion strategy. Our studies may offer an opportunity to develop flexible, wearable microfluidic sensors for haloalkane sensing, and advance the in-depth fundamental understanding of the physical origin of anion-exchanged nanocrystals.

18.
Adv Mater ; 33(25): e2101852, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33988874

ABSTRACT

Solution-processed metal-halide perovskites hold great promise in developing next-generation low-cost, high-performance photodetectors. However, the weak absorption of perovskites beyond the near-infrared spectral region posts a stringent limitation on their use for broadband photodetectors. Here, the rational design and synthesis of an upconversion nanoparticles (UCNPs)-perovskite nanotransducer are presented, namely UCNPs@mSiO2 @MAPbX3 (X = Cl, Br, or I), for broadband photon detection spanning from X-rays, UV, to NIR. It is demonstrated that, by in situ crystallization and deliberately tuning the material composition in the lanthanide core and perovskites, the nanotransducers allow for a high stability and show a wide linear response to X-rays of various dose rates, as well as UV/NIR photons of various power densities. The findings provide an opportunity to explore the next-generation broadband photodetectors in the field of high-quality imaging and optoelectronic devices.

19.
Angew Chem Int Ed Engl ; 60(27): 15006-15012, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33871140

ABSTRACT

Singlet oxygen (1 O2 ) has a potent anticancer effect, but photosensitized generation of 1 O2 is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of 1 O2 -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO42- catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO42- -catalyzed generation of 1 O2 from H2 O2 and protects MoO42- from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH. H2 O2 and 1 O2 can freely cross the liposomal membrane, allowing CMTN with a built-in NIR-II ratiometric fluorescent 1 O2 sensor to achieve monitored tumor CDT.


Subject(s)
Fluorescence , Molybdenum/chemistry , Nanoparticles/chemistry , Photochemotherapy , Singlet Oxygen/chemistry , Catalysis , Humans , Infrared Rays , Tumor Hypoxia , Tumor Microenvironment
20.
Nature ; 590(7846): 410-415, 2021 02.
Article in English | MEDLINE | ID: mdl-33597760

ABSTRACT

Current X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional objects because fabrication of large-area, flexible, silicon-based photodetectors on highly curved surfaces remains a challenge1-3. Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution, three-dimensional imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated by quantum mechanical simulations of defect formation and electronic structures, our experimental characterizations reveal that slow hopping of trapped electrons due to radiation-triggered anionic migration in host lattices can induce more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging with resolution greater than 20 line pairs per millimetre and optical memory longer than 15 days. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and offer a paradigm to motivate future research in wearable X-ray detectors for patient-centred radiography and mammography, imaging-guided therapeutics, high-energy physics and deep learning in radiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...