Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 11(1): 135, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35551179

ABSTRACT

Recently discovered reflective Pancharatnam-Berry phase (PB phase) from chiral anisotropic media (e.g., cholesteric liquid crystal, CLC) has aroused great interest in the emerging frontier of planar optics. However, the single chirality of common CLCs results in the intrinsic limitation of the same spin-selective PB phase manipulation, which means the reversal of the input spin cannot realize the conjugated PB phase. In this work, an innovative scheme based on opposite-chirality-coexisted superstructures is proposed to simultaneously modulate orthogonal circular polarization and get PB phase reversal. Through refilling CLC into a washed-out polymer network with opposite chirality and delicate photo-patterned structures, reflective optical vortex (OV) with opposite topological charges and vector beams with conjugated spiral PB phases are efficiently generated depending on the incident polarization. Furthermore, OV holograms are encoded to reconstruct polarization-selective OV arrays, indicating the strong capability of such opposite-chirality-coexisted anisotropic media. This work provides a new compact platform for planar optics, and sheds light on the architectures and functionalities of chiral superstructures.

2.
Sci Adv ; 7(32)2021 Aug.
Article in English | MEDLINE | ID: mdl-34362740

ABSTRACT

Rotation-translation conversion is a popular way to achieve power transmission in machinery, but it is rarely selected by nature. One unique case is that of bacteria swimming, which is based on the collective reorganization and rotation of flagella. Here, we mimic such motion using the light-driven evolution of a self-organized periodic arch pattern. The range and direction of translation are altered by separately varying the alignment period and the stimulating photon energy. Programmable self-propelling actuators are realized via a specific molecular assembly within a photoresponsive cholesteric medium. Through rationally presetting alignments, parallel transports of microspheres in customized trajectories are demonstrated, including convergence, divergence, gathering, and orbital revolution. This work extends the understanding of the rotation-translation conversion performed in an exquisitely self-organized system and may inspire future designs for functional materials and intelligent robotics.

SELECTION OF CITATIONS
SEARCH DETAIL
...