Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 68(6): 1894-1902, 2021 06.
Article in English | MEDLINE | ID: mdl-33026979

ABSTRACT

The slow light sensor techniques have been applied to bio-related detection in the past decades. However, similar testing-systems are too large to carry to a remote area for diagnosis or point-of-care testing. This study demonstrated a fully automatic portable biosensing system based on the microring resonator. An optical-fiber array mounted on a controller based micro-positioning system, which can be interfaced with MATLAB to locate a tentative position for light source and waveguide coupling alignment. Chip adapter and microfluidic channel could be packaged as a product such that it is cheap to be manufactured and can be disposed of after every test conducted. Thus, the platform can be more easily operated via an ordinary user without expertise in photonics. It is designed based on conventional optical communication wavelength range. The C-band superluminescent-light-emitting-diode light source couples in/out the microring sensor to obtain quasi-TE mode by grating coupler techniques. For keeping a stable chemical binding reaction, the cost-effective microfluidic pump was developed to offer a specific flow rate of 20 µL/min by using a servo-motor, an Arduino board, and a motor driver. The subwavelength grating metamaterial ring resonator shows highly sensitive sensing performance via surface index changes due to biomarker adhered on the sensor. The real-time peak-shift monitoring shows 10 µg/mL streptavidin detection of limit based on the biotin-streptavidin binding reaction. Through the different specific receptors immobilized on the sensor surface, the system can be utilized on the open applications such as heavy metal detection, gas sensing, virus examination, and cancer marker diagnosis.


Subject(s)
Biosensing Techniques , Optical Fibers , Optics and Photonics
2.
Nanoscale Res Lett ; 15(1): 167, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32816117

ABSTRACT

An effective-area photovoltaic efficiency of 1.27% in power conversion, excluding the grid metal contact area and under 1 sun, AM 1.5G conditions, has been obtained for the p-GaN/i-InGaN/n-GaN diode arrays epitaxially grown on (111)-Si. The short-circuit current density is 14.96 mA/cm2 and the open-circuit voltage is 0.28 V. Enhanced light trapping acquired via multiple reflections within the strain and defect free III-nitride nanorod array structures and the short-wavelength responses boosted by the wide bandgap III-nitride constituents are believed to contribute to the observed enhancements in device performance.

3.
Biosens Bioelectron ; 141: 111396, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31195197

ABSTRACT

Mode volume overlap factor is one of the parameters determining the sensitivity of a sensor. In past decades, many approaches have been proposed to increase the mode volume overlap. As the increased mode volume overlap factor results in reduced mode confinement, the maximum value is ultimately determined by the micro- and nano-structure of the refractive index distribution of the sensing devices. Due to the asymmetric index profile along the vertical direction on silicon-on-insulator platform, further increasing the sensitivity of subwavelength grating metamaterial (SGM) waveguide based sensors is challenging. In this paper, we propose and demonstrate pedestaled SGM which reduces the asymmetricity and thus allows further increasing the interaction between optical field and analytes. The pedestal structure can be readily formed by a controlled undercut etching. Both theoretical analysis and experimental demonstration show a significant improvement of sensitivity. The bulk sensitivity and surface sensitivity are improved by 28.8% and 1000 times, respectively. The detection of streptavidin at a low concentration of 0.1 ng/mL (∼1.67 pM) is also demonstrated through real-time monitoring of the resonance shift. A ∼400 fM streptavidin limit of detection is expected with a 0.01nm resolution spectrum analyzer based on the real-time measurement of streptavidin detection results from two-site binding model fitting.


Subject(s)
Biosensing Techniques/instrumentation , Refractometry/instrumentation , Algorithms , Equipment Design , Silicon/chemistry , Streptavidin/analysis
4.
Nanoscale Res Lett ; 12(1): 287, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28431463

ABSTRACT

In this report, ferromagnetic interactions in modulation-doped GaMnN nanorods grown on Si (111) substrate by plasma-assisted molecular beam epitaxy are investigated with the prospect of achieving a room temperature ferromagnetic semiconductor. Our results indicate the thickness of GaN layer in each GaN/MnN pair, as well as Mn-doping levels, are essential for suppressing secondary phases as well as enhancing the magnetic moment. For these optimized samples, structural analysis by high-resolution X-ray diffractometry and Raman spectroscopy verifies single-crystalline modulation-doped GaMnN nanorods with Ga sites substituted by Mn atoms. Energy dispersive X-ray spectrometry shows that the average Mn concentration can be raised from 0.4 to 1.8% by increasing Mn fluxes without formation of secondary phases resulted in a notable enhancement of the saturation magnetization as well as coercive force in these nanorods.

5.
Nanoscale Res Lett ; 6(1): 631, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22168896

ABSTRACT

Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...