Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 16(3): 625-637, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36969146

ABSTRACT

Intensive hunting activities such as commercial fishing and trophy hunting can have profound influences on natural populations. However, less intensive recreational hunting can also have subtle effects on animal behaviour, habitat use and movement, with implications for population persistence. Lekking species such as the black grouse (Lyrurus tetrix) may be especially prone to hunting as leks are temporally and spatially predictable, making them easy targets. Furthermore, inbreeding in black grouse is mainly avoided through female-biased dispersal, so any disruptions to dispersal caused by hunting could lead to changes in gene flow, increasing the risk of inbreeding. We therefore investigated the impact of hunting on genetic diversity, inbreeding and dispersal on a metapopulation of black grouse in Central Finland. We genotyped 1065 adult males and 813 adult females from twelve lekking sites (six hunted, six unhunted) and 200 unrelated chicks from seven sites (two hunted, five unhunted) at up to thirteen microsatellite loci. Our initial confirmatory analysis of sex-specific fine-scale population structure revealed little genetic structure in the metapopulation. Levels of inbreeding did not differ significantly between hunted and unhunted sites in neither adults nor chicks. However, immigration rates into hunted sites were significantly higher among adults compared to immigration into unhunted sites. We conclude that the influx of migrants into hunted sites may compensate for the loss of harvested individuals, thereby increasing gene flow and mitigating inbreeding. Given the absence of any obvious barriers to gene flow in Central Finland, a spatially heterogeneous matrix of hunted and unhunted regions may be crucial to ensure sustainable harvests into the future.

2.
Genes (Basel) ; 13(3)2022 03 18.
Article in English | MEDLINE | ID: mdl-35328094

ABSTRACT

Much debate surrounds the importance of top-down and bottom-up effects in the Southern Ocean, where the harvesting of over two million whales in the mid twentieth century is thought to have produced a massive surplus of Antarctic krill. This excess of krill may have allowed populations of other predators, such as seals and penguins, to increase, a top-down hypothesis known as the 'krill surplus hypothesis'. However, a lack of pre-whaling population baselines has made it challenging to investigate historical changes in the abundance of the major krill predators in relation to whaling. Therefore, we used reduced representation sequencing and a coalescent-based maximum composite likelihood approach to reconstruct the recent demographic history of the Antarctic fur seal, a pinniped that was hunted to the brink of extinction by 18th and 19th century sealers. In line with the known history of this species, we found support for a demographic model that included a substantial reduction in population size around the time period of sealing. Furthermore, maximum likelihood estimates from this model suggest that the recovered, post-sealing population at South Georgia may have been around two times larger than the pre-sealing population. Our findings lend support to the krill surplus hypothesis and illustrate the potential of genomic approaches to shed light on long-standing questions in population biology.


Subject(s)
Euphausiacea , Fur Seals , Animals , Antarctic Regions , Euphausiacea/genetics , Fur Seals/genetics , Likelihood Functions , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...