Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 74(12): 3613-3629, 2023 06 27.
Article in English | MEDLINE | ID: mdl-36928543

ABSTRACT

In flowering plants, floral induction signals intersect at the shoot apex to modulate meristem determinacy and growth form. Here, we report a single-nucleus RNA sequence analysis of litchi apical buds at different developmental stages. A total of 41 641 nuclei expressing 21 402 genes were analyzed, revealing 35 cell clusters corresponding to 12 broad populations. We identify genes associated with floral transition and propose a model that profiles the key events associated with litchi floral meristem identity by analyzing 567 identified floral meristem cells at single cell resolution. Interestingly, single-nucleus RNA-sequencing data indicated that all putative FT and TFL1 genes were not expressed in bud nuclei, but significant expression was detected in bud samples by RT-PCR. Based on the expression patterns and gene silencing results, we highlight the critical role of LcTFL1-2 in inhibiting flowering and propose that the LcFT1/LcTFL1-2 expression ratio may determine the success of floral transition. In addition, the transport of LcFT1 and LcTFL1-2 mRNA from the leaf to the shoot apical meristem is proposed based on in situ and dot-blot hybridization results. These findings allow a more comprehensive understanding of the molecular events during the litchi floral transition, as well as the identification of new regulators.


Subject(s)
Flowers , Litchi , RNA, Messenger/genetics , RNA, Messenger/metabolism , Plant Leaves/metabolism , Sequence Analysis, RNA/methods , Meristem , Gene Expression Regulation, Plant
2.
J Colloid Interface Sci ; 642: 29-40, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37001455

ABSTRACT

Electroplating sludge, though a hazardous waste, is a valuable resource as it contains a large amount of precious metals. In this study, copper was recovered from the electroplating sludge using a technology that integrates bipolar membrane electrodialysis (BMED) and electrodeposition. The experimental results showed that Cu2+ in the electroplating sludge was successfully separated and concentrated in the BMED system without adding any chemical reagents; the concentrated Cu2+ was recovered in the form of copper foil in an electrodeposition system. Current density clearly affected the Cu2+ separation and concentration in the BMED system; the current density, solution pH and Cu2+ concentration drastically affected the Cu2+ electrodeposition ratio and the morphology and purity of the obtained copper foil. Under the optimised experimental conditions, 96.4% of Cu2+ was removed from the electroplating sludge and 65.4% of Cu2+ was recovered in the foil form. On increasing the number of electroplating sludge compartments from one to two and three, the current efficiency for recovering Cu2+ increased from 17.4% to 28.5% and 35.2%, respectively, and the specific energy consumption decreased from 11.3 to 6.7 and 5.3 kW h/kg of copper, respectively. The purity of the copper foil was higher than 99.5%. Thus, the integrated technology can be regarded as an effective method for recovering copper from electroplating sludge.

3.
Environ Pollut ; 324: 121425, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36898645

ABSTRACT

Antibiotic fermentation residue flocculated by polymeric ferric sulfate (PFS) has been classified as a "hazardous waste" in China. In this study, it was recycled into antibiotic fermentation residue biochar (AFRB) by pyrolysis and used as a heterogeneous electro-Fenton (EF) catalyst for ciprofloxacin (CIP) degradation. The results show that PFS was reduced to Fe0 and FeS during pyrolysis, which was beneficial for the EF process. The AFRB with mesoporous structures exhibited soft magnetic features, which were convenient for separation. CIP was completely degraded within 10 min by the AFRB-EF process at an initial concentration of 20 mg/L. Increasing the working current and catalyst dosage within a certain range could improve the degradation rate. ·OH and O2·- were the dominant reactive oxygen species that played critical roles for CIP degradation. The antibacterial groups of CIP have been destroyed by the heterogeneous electro-Fenton process and its toxicity was negligible. The AFRB showed satisfactory performance, even though it was recycled five times. This study provide new insights into the resourceful treatment of antibiotic fermentation residues.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Ciprofloxacin/chemistry , Fermentation , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry , Anti-Bacterial Agents/chemistry , Oxidation-Reduction
4.
J Colloid Interface Sci ; 637: 431-440, 2023 May.
Article in English | MEDLINE | ID: mdl-36716667

ABSTRACT

In this study, nickel (Ni) was recovered from electroplating sludge in the form of Ni(OH)2 using a bipolar membrane electrodialysis (BMED) system. The results showed that the H+ generated by the bipolar membrane could effectively desorb Ni from the sludge to the solution and the solution pH considerably affected Ni desorption. The desorption process can be described using the first-order kinetic model. The current density and solid/liquid ratio (m/v) considerably affected Ni recovery. Moreover, 100% of Ni was removed from the electroplating sludge and 93.5% of Ni was recovered after 28 h under a current density of 20 mA/cm2, a solid/liquid ratio of 1.0:15 and an electroplating-sludge particle size of 100 mesh. As the number of electroplating compartments increased from one to two and three, the current efficiency for recovering Ni changed from 12.1% to 11.8% and 11.9%, respectively, and the specific energy consumption decreased from 0.064 to 0.048 and 0.039 kW·h/g, respectively. Fourier-transform infrared spectroscopy and Raman spectroscopy showed that the precipitate obtained in this study is similar to commercial Ni(OH)2 and the purity of Ni(OH)2 in the obtained precipitate was 79%. Thus, the results showed that the BMED system is effective for recovering Ni from electroplating sludge.

5.
Chemosphere ; 310: 136822, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36252899

ABSTRACT

Ni is often present in plating wastewater as a complexing state. It is difficult to remove this Ni using traditional chemical precipitation technology. In this study, a bipolar membrane electrodialysis system was used to recover Ni in the form of Ni(OH)2 from plating wastewater containing Ni-ethylenediaminetetraacetic acid (Ni-EDTA) without adding chemical reagents. The stable structure of Ni-EDTA can be destroyed by H+ produced by the bipolar membrane to obtain free Ni2+, which can combine with OH- produced by the bipolar membrane to form Ni(OH)2. When the electrolyte Na2SO4 concentration, current density and initial Ni-EDTA concentration were 0.2 mol/L, 16 mA/cm2 and 1000 mg/L, respectively, 99.0% of Ni-EDTA was removed after 32 h. When the system was used to treat actual plating wastewater, 92.1% of Ni-EDTA was removed and 88.7% was recovered. When the number of wastewater compartments in the system was increased from one to three, the current efficiency increased from 1.7% to 5.8%, and the specific energy consumption decreased from 0.39 to 0.19 kW h/g. The results of an X-ray diffraction study indicate that the Ni(OH)2 obtained in this study is similar to commercial Ni(OH)2. Moreover, the recovery mechanism of Ni-EDTA was analysed. Thus, bipolar membrane electrodialysis can be regarded as an effective method to recover Ni from wastewater containing Ni-EDTA.


Subject(s)
Nickel , Wastewater , Wastewater/chemistry , Nickel/chemistry , Edetic Acid/chemistry , Chemical Precipitation
6.
Front Plant Sci ; 13: 1023515, 2022.
Article in English | MEDLINE | ID: mdl-36438120

ABSTRACT

Plant diseases cause significant economic losses and food security in agriculture each year, with the critical path to reducing losses being accurate identification and timely diagnosis of plant diseases. Currently, deep neural networks have been extensively applied in plant disease identification, but such approaches still suffer from low identification accuracy and numerous parameters. Hence, this paper proposes a model combining channel attention and channel pruning called CACPNET, suitable for disease identification of common species. The channel attention mechanism adopts a local cross-channel strategy without dimensionality reduction, which is inserted into a ResNet-18-based model that combines global average pooling with global max pooling to effectively improve the features' extracting ability of plant leaf diseases. Based on the model's optimum feature extraction condition, unimportant channels are removed to reduce the model's parameters and complexity via the L1-norm channel weight and local compression ratio. The accuracy of CACPNET on the public dataset PlantVillage reaches 99.7% and achieves 97.7% on the local peanut leaf disease dataset. Compared with the base ResNet-18 model, the floating point operations (FLOPs) decreased by 30.35%, the parameters by 57.97%, the model size by 57.85%, and the GPU RAM requirements by 8.3%. Additionally, CACPNET outperforms current models considering inference time and throughput, reaching 22.8 ms/frame and 75.5 frames/s, respectively. The results outline that CACPNET is appealing for deployment on edge devices to improve the efficiency of precision agriculture in plant disease detection.

7.
Chemosphere ; 308(Pt 3): 136488, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152825

ABSTRACT

An efficient and thorough water disinfection is critical for human health. In this study, UVA-LEDs, nitrilotriacetic acid (NTA) and a boron-doped diamond anode were respectively used as the UVA source, the iron chelator and the anode for the UVA/electro-Fenton (E-Fenton) reaction to treat wastewater. The disinfection performance of the UVA/E-Fenton had been investigated. The mechanisms of the E. coli inactivation had been clarified. The results showed that complete disinfection (about 5.6-log removal) could be achieved within 50 min at a certain condition due to the synergistic effort of the UVA, anodic oxidation and the electro-Fenton. The quenching experiments and the electron paramagnetic resonance (EPR) detection indicated that •OH, •O2- and 1O2 play important roles for inactivating E. coli. The results of SEM images and genomic DNA electrophoresis suggested that both the cell structure and the DNA had been thoroughly destroyed during the UVA/E-Fenton process. Increasing the UVA irradiation, oxygen bubbling could improve the disinfection rate, while it also would increase the energy consumption. The appropriate Fe and NTA ratio was 1:2 to realize an efficient Fenton reaction under near neutral condition. Complete disinfection was also achieved within 50 min when it used for treating real wastewater. Thus, the UVA/E-Fenton process is a satisfied way for water disinfection.


Subject(s)
Disinfection , Wastewater , Boron/chemistry , Diamond/chemistry , Disinfection/methods , Electrodes , Escherichia coli , Humans , Hydrogen Peroxide/chemistry , Iron/chemistry , Iron Chelating Agents , Nitrilotriacetic Acid , Oxidation-Reduction , Oxygen/analysis , Wastewater/analysis , Water/analysis
8.
J Hazard Mater ; 435: 129099, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35650736

ABSTRACT

In this study, the UVA (Ultraviolet A) drinking water disinfection was promoted by electrolysis. The influences of the UVA, electrolysis current, bubbling and temperature were investigated. The disinfection mechanisms and bacterial reactivation had been studied. The results revealed that the treatment time needed to reach the DL (detection limit, about 5.4 log removal) was shortened from 180 to 80 min by the electrolysis. The total electricity consumption decreased from about 126-57.0 kJ/L. Compared with increasing the UVA irradiation, increasing the electrolysis current in a certain range was more preferred to improve the disinfection rate. Oxygen bubbling or higher temperature could enhance the E. coli inactivation. The quenching experiment and EPR (Electron paramagnetic resonance) detection confirmed that ROSs (1O2, ·O2- and ·OH) played important roles for the disinfection. Compared with the treatment with UVA alone, the cell membrane damage was more severe by the promoting method. In addition to the dramatically reduced enzyme activity, the synergistic process degraded most of the bacterial genomic DNA, and the bacteria were completely killed. Therefore, hybrid with electrolysis is a better way for the application of the UVA-LED disinfection.


Subject(s)
Disinfection , Drinking Water , Bacteria , Disinfection/methods , Electrolysis , Escherichia coli/radiation effects , Ultraviolet Rays
9.
J Colloid Interface Sci ; 619: 280-288, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35397461

ABSTRACT

Chromium slag (CS) with large quantities of multivalent Cr species (III and VI) generated during chromium salt production is hazardous to nature and living organisms. Furthermore, CS discharge leads to considerable resource wastage. Herein, a bipolar membrane electrodialysis (BMED) system was employed along with hydrogen peroxide (H2O2) oxidation for simultaneously recovering Cr(III) and Cr(VI) from CS in the form of Na2CrO4. A bipolar membrane was used to produce OH- under a direct electric field, providing an alkaline environment for the oxidative conversion of Cr(III) to Cr(VI) in the presence of H2O2, followed by the recovery of Cr(III) and Cr(VI) as Na2CrO4. The effect of H2O2content on Cr(III) oxidation and that of the current density on chromium recovery, current efficiency and specific energy consumption were investigated. Moreover, the morphology of chromium in CS before and after the BMED treatment was analysed. The H2O2 content affected the Cr oxidation rate from Cr(III) to Cr(VI). The current density affected chromium removal, current efficiency and specific energy consumption. At a current density of 2 mA/cm2, the total chromium recovery exceeded 67% and the remaining chromium was mainly in the residual state (RES). When the number of CS compartments increased, the current efficiency was enhanced and the specific energy consumption decreased. Binding state analysis show that Cr(III) and different species of Cr(VI) could be transformed into exchangeable Cr(VI) after H2O2 oxidation and BMED treatment. After the treatment, 92% of the remaining chromium in CS was in the RES. Thus, the employed method can effectively recover chromium from CS and other chromium-contaminated solid waste.


Subject(s)
Chromium , Hydrogen Peroxide , Chromium/chemistry , Oxidation-Reduction
10.
Sci Total Environ ; 819: 152006, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34856253

ABSTRACT

The addition of alkaline and magnesium sources during the recovery of NH4+ and PO43- in the form of struvite using the traditional struvite precipitation method increases the production cost. To solve this problem, a magnesium-air cell (MAC) system was used herein to recover NH4+ and PO43- as struvite from wastewater using a magnesium strip (Mg2+) and the oxygen adsorbed on the surface of a titanium plate (OH-) as the anode and cathode, respectively. Experimental parameters (i.e. initial solution pH, temperature, NH4+/PO43- molar ratio, NH4+ and PO43- initial concentrations and stirring intensity) were found to affect the removal rate of NH4+ and PO43-. The presence of Ca2+ decreased the struvite purity. At Ca2+/PO43- ratios of 0:1 and 0.5:1, the purity of the obtained struvite after 6 h was 93.8% and 58.9%, respectively. Struvite with a purity of 95.7%, electricity with an average output power of 2.53 mW, and an energy density of 1.05 W/m2 were obtained when the proposed system was used to recover NH4+ and PO43- from an actual supernatant of domestic sludge anaerobic digestion. Scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analyses showed that the obtained struvite exhibited almost the same physicochemical properties as commercial struvite. Thus, the MAC system can be regarded as an effective method for recovering NH4+ and PO43- in the form of struvite from wastewater.


Subject(s)
Ammonium Compounds , Phosphates , Chemical Precipitation , Magnesium/analysis , Nitrogen/chemistry , Phosphates/chemistry , Phosphorus/chemistry , Struvite/chemistry
11.
J Hazard Mater ; 426: 128119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34953255

ABSTRACT

Aquaculture wastewater contained large amounts of pathogenic microorganisms, nitrogen (N) and phosphorus (P). In this study, the nutrient recoveries and wastewater disinfection were simultaneously achieved using Mg-coconut shell carbon (Mg-CSC). The composites were prepared by a ball milling method. The hydrogen peroxide (H2O2) was in-situ generated by the dissolved oxygen reduction driven by Mg corrosion on the CSC surface, which inactivated the microorganisms. Besides that, Mg corrosion provided sufficient Mg ions and appropriate pH conditions for struvite formation. The results show that 5.4-log E.coli removal was achieved under different conditions. Improving the Mg/CSC ratio and composite dosage could shorten the time required for disinfection. In addition to H2O2, singlet oxygen played a critical role. Reactive oxygen species destroyed the cellular structure and killed the bacteria. The recoveries of NH4+-Nand P under certain conditions were about 60% and 91%, respectively. An increased composite dosage could improve the recovery ratio of P. Excessive dosages were not beneficial for removing NH4+-N. The characterization result revealed that struvite crystals were the main precipitates on the CSC surface. The Mg-CSC composites also revealed satisfied nutrient recovery and disinfection performances in the real aquaculture wastewater treatment process.


Subject(s)
Cocos , Wastewater , Aquaculture , Carbon , Disinfection , Hydrogen Peroxide , Nutrients , Phosphates , Phosphorus , Struvite
12.
Environ Sci Technol ; 54(20): 13304-13313, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32955252

ABSTRACT

In this study, a modified bipolar membrane electrodialysis system equipped with a "back-to-back" soil compartment was fabricated for simultaneous removal of trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) from contaminated soils. The results showed that the soil solution pH had a significant effect on the Cr(III) and Cr(VI) desorption, and the desorption data fit well with the Elovich kinetic model. Current density had an obvious effect on Cr(III) and Cr(VI) removal, cell voltage, soil pH, current efficiency, and specific energy consumption, and the optimal current density was 2.0 mA/cm2. The removal efficiencies of Cr(III) and Cr(VI) were both 99.8%, while Cr(III) and Cr(VI) recoveries were somewhat lower at 87 and 90%, respectively, because some Cr(III) and Cr(VI) were adsorbed by the membranes. An energy consumption analysis indicates that the back-to-back soil compartment equipped system increased the current efficiency and decreased the specific energy consumption. When a system equipped with two back-to-back soil compartments was used to remove chromium from soil, the current efficiency increased to 28.8% and the specific energy consumption decreased to 0.048 kWh/g. The experimental results indicate that the proposed process has the potential to be an effective technique for the treatment of soil contaminated with heavy metals.


Subject(s)
Soil Pollutants , Soil , Chromium/analysis , Environmental Pollution , Soil Pollutants/analysis
13.
J Hazard Mater ; 377: 259-266, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31173974

ABSTRACT

Low efficiency is often a problem in electrochemical reductive hydrodechlorination (ERHD) to remove chlorinated compounds such as 2,4-dichlorophenol (24DCP) from water. In this study, a composite molecularly imprinted membrane (MIM)/bipolar membrane (BPM) was introduced onto a palladium-coated titanium mesh electrode (BPM/MIM@Pd/Ti) to increase the concentration of 24DCP on the surface of electrode and ERHD efficiency. The efficiency of ERHD of 24DCP increased from 70 to 88% by introduction of the two membranes, from 71 to 89% by increasing current density from 5.0 to 30 mA/cm2, and from 80 to 94% by increasing the electrolyte concentration from 0.25 to 1.00 mol/L. Treatment with Fenton's reagent after ERHD achieved 100% 24DCP removal, with chemical oxygen demand and total organic carbon reductions of 91 and 87%, respectively. Notably, these reductions were greater than obtained from the direct oxidation of the 24DCP solution by Fenton's reagent alone (i.e., 98, 84, and 72%, respectively). No products were detected in solution by GC-MS after treatment with the proposed combination technology. The mechanism of 24DCP removal and degradation involved adsorption, electrochemical hydrodechlorination via Hads, and Fenton oxidation. Results show the process has high potential for removing 24DCP from aqueous solution.

14.
Chemosphere ; 215: 380-387, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30336315

ABSTRACT

A reticulated vitreous carbon (RVC) cathode modified by anodic polarization in 20 wt% H2SO4 solution was used for drinking water disinfection under a neutral low electrolyte concentration (0.25 g/L Na2SO4) condition. The contribution of the modified RVC anode and the Ti/RuO2 cathode to disinfection was investigated. The influences of current, initial Escherichia coli load, temperature and water volume were studied. The results show that H2O2 generation increased to approximately three times using the modification of the RVC. E. coli was mainly deactivated by the H2O2 generated at the cathode. For water with about 106 CFU/mL E. coli, the detection limit (<4 CFU/mL) was reached under different conditions. Increasing current could simultaneously shorten the treatment time and increase the energy consumption (EC) simultaneously. Although decreasing the initial load reduced the treatment time, the EC for per log E. coli removal increased. The time required for disinfection shortened from 3.5 to 2.5 h and the EC for per log removal decreased from 218.5 to 123.2 Wh/m3 when the temperature increased from 20 to 40 °C. Although more time was required for disinfection, the EC decreased from 218.5 to 141.4 Wh/m3 when the volume was doubled.


Subject(s)
Carbon/chemistry , Disinfection/methods , Drinking Water/chemistry , Electrochemical Techniques/methods , Water Purification/methods , Electrochemical Techniques/instrumentation , Electrodes , Escherichia coli/metabolism , Hydrogen Peroxide/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...