Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.480
Filter
2.
Front Pharmacol ; 15: 1377055, 2024.
Article in English | MEDLINE | ID: mdl-38828450

ABSTRACT

Primary Sjögren's Syndrome (pSS) is a complex autoimmune disorder characterized by exocrine gland dysfunction, leading to dry eyes and mouth. Despite growing interest in biologic therapies for pSS, FDA approval has proven challenging due to trial complications. This review addresses the absence of a molecular-target-based approach to biologic therapy development and highlights novel research on drug targets and clinical trials. A literature search identified potential pSS treatment targets and recent advances in molecular understanding. Overlooking extraglandular symptoms like fatigue and depression is a notable gap in trials. Emerging biologic agents targeting cytokines, signal pathways, and immune responses have proven efficacy. These novel therapies could complement existing methods for symptom alleviation. Improved grading systems accounting for extraglandular symptoms are needed. The future of pSS treatment may involve gene, stem-cell, and tissue-engineering therapies. This narrative review offers insights into advancing pSS management through innovative biologic interventions.

3.
J Thorac Imaging ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704662

ABSTRACT

PURPOSE: The relationship between plaque progression and pericoronary adipose tissue (PCAT) radiomics has not been comprehensively evaluated. We aim to predict plaque progression with PCAT radiomics features and evaluate their incremental value over quantitative plaque characteristics. PATIENTS AND METHODS: Between January 2009 and December 2020, 500 patients with suspected or known coronary artery disease who underwent serial coronary computed tomography angiography (CCTA) ≥2 years apart were retrospectively analyzed and randomly stratified into a training and testing data set with a ratio of 7:3. Plaque progression was defined with annual change in plaque burden exceeding the median value in the entire cohort. Quantitative plaque characteristics and PCAT radiomics features were extracted from baseline CCTA. Then we built 3 models including quantitative plaque characteristics (model 1), PCAT radiomics features (model 2), and the combined model (model 3) to compare the prediction performance evaluated by area under the curve. RESULTS: The quantitative plaque characteristics of the training set showed the values of noncalcified plaque volume (NCPV), fibrous plaque volume, lesion length, and PCAT attenuation were larger in the plaque progression group than in the nonprogression group ( P < 0.05 for all). In multivariable logistic analysis, NCPV and PCAT attenuation were independent predictors of coronary plaque progression. PCAT radiomics exhibited significantly superior prediction over quantitative plaque characteristics both in the training (area under the curve: 0.814 vs 0.615, P < 0.001) and testing (0.736 vs 0.594, P = 0.007) data sets. CONCLUSIONS: NCPV and PCAT attenuation were independent predictors of coronary plaque progression. PCAT radiomics derived from baseline CCTA achieved significantly better prediction than quantitative plaque characteristics.

4.
Front Oncol ; 14: 1395654, 2024.
Article in English | MEDLINE | ID: mdl-38720809

ABSTRACT

Background: Cases of ALK-rearranged EGFR wild-type lung adenocarcinoma (LUAD) transforming into small cell lung cancer (SCLC) are rarely reported, and diagnosis is often delayed. The emergence of this transformation phenomenon is often regarded as a consequence of acquired resistance mechanisms. Case presentation: A 47-year-old male diagnosed with poorly differentiated adenocarcinoma of the right middle lung (pT2N2M0, stage IIIA) achieved a 46-month progression-free survival (PFS) following surgery and adjuvant chemotherapy. During routine follow-up, tumor recurrence and metastasis was detected. Genetic testing revealed ALK rearrangement and wild-type EGFR, prompting treatment with ALK-TKIs. In May 2023, abdominal CT scans showed significant progression of liver metastases and abnormal elevation of the tumor marker NSE. Immunohistochemical results from percutaneous liver biopsy indicated metastatic SCLC. Results: After resistance to ALK-TKIs and transformation to SCLC, the patient received chemotherapy combined with immunotherapy for SCLC, but the patient's disease progressed rapidly. Currently, the patient is being treated with albumin-bound paclitaxel in combination with oral erlotinib and remains stable. Conclusion: Histological transformation emerges as a compelling mechanism of resistance to ALK-TKIs, necessitating the utmost urgency for repeat biopsies in patients displaying disease progression after resistance. These biopsies are pivotal in enabling the tailor-made adaptation of treatment regimens to effectively counteract the assorted mechanisms of acquired resistance, thus optimizing patient outcomes in the battle against ALK-driven malignancies.

5.
Psychiatry Res ; 337: 115929, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38718554

ABSTRACT

Multiple types of variations have been postulated to confer risk of schizophrenia and bipolar disorder, but majority of present GWAS solely focused on SNPs or small indels, and the impacts of structural variations (SVs) remain less understood. Nevertheless, accumulating evidence suggest that SVs may explain the association signals in certain GWAS hits. Here, we conducted pairwise linkage disequilibrium (LD) analyses of SNPs and SVs in populations from 1000 Genomes Project. Among the 299 psychiatric GWAS loci, 1213 SVs showed an LD of r2 > 0.1 with GWAS risk SNPs, and 66 of them were in moderate to strong LD (r2 > 0.6) with at least one GWAS risk SNP. Nine SVs were subject to further explorative analyses, including eQTL analysis in DLPFC, luciferase reporter gene assays, CRISPR/Cas9-mediated genome deletion and RT-qPCR. These assays highlighted several functional SVs showing regulatory effects on transcriptional activities, and some risk genes (e.g., BORCS7, GNL3) affected by the SVs were also annotated. Finally, mice overexpressing Borcs7 in the mPFC exhibited schizophrenia-like behaviors, such as abnormal prepulse inhibition and social dysfunction. These data suggest that SNPs association signals at GWAS loci might be driven by SVs, highlighting the necessities of considering such variants in future.

6.
Bioact Mater ; 38: 169-180, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38711759

ABSTRACT

Recombinant human bone morphogenetic protein-2 (rhBMP-2) is the predominant growth factor that effectively induces osteogenic differentiation in orthopedic procedures. However, the bioactivity and stability of rhBMP-2 are intrinsically associated with its sequence, structure, and storage conditions. In this study, we successfully determined the amino acid sequence and protein secondary structure model of non-glycosylated rhBMP-2 expressed by an E. coli expression system through X-ray crystal structure analysis. Furthermore, we observed that acidic storage conditions enhanced the proliferative and osteoinductive activity of rhBMP-2. Although the osteogenic activity of non-glycosylated rhBMP-2 is relatively weaker compared to glycosylated rhBMP-2; however, this discrepancy can be mitigated by incorporating exogenous chaperone molecules. Overall, such information is crucial for rationalizing the design of stabilization methods and enhancing the bioactivity of rhBMP-2, which may also be applicable to other growth factors.

7.
Chem Commun (Camb) ; 60(42): 5474-5485, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712400

ABSTRACT

Toll-like receptor 7/8 (TLR-7/8) agonists serve as a promising class of pattern recognition receptors that effectively evoke the innate immune response, making them promising immunomodulatory agents for tumor immunotherapy. However, the uncontrollable administration of TLR-7/8 agonists frequently leads to the occurrence of severe immune-related adverse events (irAEs). Thus, it is imperative to strategically design tumor-microenvironment-associated biomarkers or exogenous stimuli responsive TLR-7/8 agonists in order to accurately evaluate and activate innate immune responses. No comprehensive elucidation has been documented thus far regarding TLR-7/8 immune agonists that are specifically engineered to enhance immune activation. In this feature article, we provide an overview of the advancements in TLR-7/8 agonists, aiming to enhance the comprehension of their mechanisms and promote the clinical progression through nanomedicine strategies. The current challenges and future directions of cancer immunotherapy are also discussed, with the hope that this work will inspire researchers to explore innovative applications for triggering immune responses through TLR-7/8 agonists.


Subject(s)
Toll-Like Receptor 7 , Toll-Like Receptor 8 , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/immunology , Immunity, Innate/drug effects , Animals
8.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793679

ABSTRACT

In recent years, an increasing number of viruses have triggered outbreaks that pose a severe threat to both human and animal life, as well as caused substantial economic losses. It is crucial to understand the genomic structure and epidemiology of these viruses to guide effective clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing technology, has been widely used in genomic research since 2014. This technology offers several advantages over traditional methods and next-generation sequencing (NGS), such as the ability to generate ultra-long reads, high efficiency, real-time monitoring and analysis, portability, and the ability to directly sequence RNA or DNA molecules. As a result, it exhibits excellent applicability and flexibility in virus research, including viral detection and surveillance, genome assembly, the discovery of new variants and novel viruses, and the identification of chemical modifications. In this paper, we provide a comprehensive review of the development, principles, advantages, and applications of nanopore sequencing technology in animal and human virus research, aiming to offer fresh perspectives for future studies in this field.


Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Viruses , Nanopore Sequencing/methods , Animals , Humans , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Virus Diseases/virology , Virus Diseases/diagnosis , Genomics/methods , Nanopores
9.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712294

ABSTRACT

Rare cell populations can be challenging to characterize using microfluidic single-cell RNA sequencing (scRNA-seq) platforms. Typically, the population of interest must be enriched and pooled from multiple biological specimens for efficient collection. However, these practices preclude the resolution of sample origin together with phenotypic data and are problematic in experiments in which biological or technical variation is expected to be high (e.g., disease models, genetic perturbation screens, or human samples). One solution is sample multiplexing whereby each sample is tagged with a unique sequence barcode that is resolved bioinformatically. We have established a scRNA-seq sample multiplexing pipeline for mouse retinal ganglion cells using cholesterol-modified-oligos and utilized the enhanced precision to investigate cell type distribution and transcriptomic variance across retinal samples. As single cell transcriptomics are becoming more widely used to research development and disease, sample multiplexing represents a useful method to enhance the precision of scRNA-seq analysis.

10.
BMC Genomics ; 25(1): 461, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734623

ABSTRACT

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Subject(s)
Actinidia , Genome, Bacterial , Genomics , Phylogeny , Plant Diseases , Pseudomonas syringae , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , China , Actinidia/microbiology , Virulence/genetics , Plant Diseases/microbiology
11.
Nat Commun ; 15(1): 3995, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734699

ABSTRACT

Optical detection of magnetic field is appealing for integrated photonics; however, the light-matter interaction is usually weak at low field. Here we observe that the photoluminescence (PL) decreases by > 40% at 10 mT in rubrene microcrystals (RMCs) prepared by a capillary-bridge assembly method. The giant magneto-PL (MPL) relies on the singlet-triplet conversion involving triplet-triplet pairs, through the processes of singlet fission (SF) and triplet fusion (TF) during radiative decay. Importantly, the size of RMCs is critical for maximizing MPL as it influences on the photophysical processes of spin state conversion. The SF/TF process is quantified by measuring the prompt/delayed PL with time-resolved spectroscopies, which shows that the geminate SF/TF associated with triplet-triplet pairs are responsible for the giant MPL. Furthermore, the RMC-based magnetometer is constructed on an optical chip, which takes advantages of remarkable low-field sensitivity over a broad range of frequencies, representing a prototype of emerging opto-spintronic molecular devices.

12.
Physiol Mol Biol Plants ; 30(4): 527-542, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737319

ABSTRACT

The TIFY family consists of plant-specific genes that regulates multiple plant functions, including developmental and defense responses. Here, we performed a comprehensive genomic analysis of TIFY genes in Dendrobium huoshanense. Our analysis encompassed their phylogenetic relationships, gene structures, chromosomal distributions, promoter regions, and patterns of collinearity. A total of 16 DhTIFY genes were identified, and classified into distinct clusters named JAZ, PPD, ZIM, and TIFY based on their phylogenetic relationship. These DhTIFYs exhibited an uneven distribution across 7 chromosomes. The expansion of the DhTIFY gene family appears to have been significantly influenced by whole-genome and segmental duplication events. The ratio of non-synonymous to synonymous substitutions (Ka/Ks) implies that the purifying selection has been predominant, maintaining a constrained functional diversification after duplication events. Gene structure analysis indicated that DhTIFYs exhibited significant structural variation, particularly in terms of gene organization and intron numbers. Moreover, numerous cis-acting elements related to hormone signaling, developmental processes, and stress responses were identified within the promoter regions. Subsequently, qRT-PCR experiments demonstrated that the expression of DhTIFYs is modulated in response to MeJA (Methyl jasmonate), cold, and drought treatment. Collectively, these results enhance our understanding of the functional dynamics of TIFY genes in D. huoshanense and may pinpoint potential candidates for detailed examination of the biological roles of TIFY genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01442-9.

13.
Mol Carcinog ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751032

ABSTRACT

The serine protease CORIN catalyzes pro-atrial natriuretic peptide (pro-ANP) into an active ANP and maintains homeostasis of the internal environment. However, it is unclear whether CORIN participates in the regulation of tumor progression. We analyzed the expression profile of CORIN in gastric cancer tissues (GCs) and adjacent nontumoral tissues (NTs). We investigated the prognostic value of CORIN in GC patients. We characterized the in vitro and in vivo activity of CORIN in cultured GC cells with gain-of-function and loss-of-function experiments. The underlying mechanism was explored by using bioinformatics, a signaling antibody array, and confirmative western blot analyses, as well as rescue experiments with highly selective small-molecule inhibitors targeting the ERK1/2 MAPK signaling pathway. CORIN was upregulated in GCs than in NTs. Overexpression of CORIN was correlated with unfavorable prognoses in patients with GC. Ectopic expression of CORIN was promoted, whereas silencing of CORIN suppressed proliferation, colony formation, migration and invasion of GC cells, and tumor growth in vivo. Overexpression of CORIN-induced epithelial-mesenchymal transition (EMT) and activation of the ERK1/2 MAPK signaling pathway, while silencing of CORIN yielded opposite results. The in vitro tumor-promoting potency of CORIN could be antagonized by selective inhibitors targeting the ERK1/2 MAPK pathway. In conclusion, CORIN is a potential prognostic marker and therapeutic target for GC patients, which may promote tumor progression by mediating the ERK1/2 MAPK signaling pathway and EMT in GC cells.

14.
Acta Biomater ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729545

ABSTRACT

Diabetic wound healing is a great clinical challenge due to the microenvironment of hyperglycemia and high pH value, bacterial infection and persistent inflammation. Here, we develop a cascade nanoreactor hydrogel (Arg@Zn-MOF-GOx Gel, AZG-Gel) with arginine (Arg) loaded Zinc metal organic framework (Zn-MOF) and glucose oxidase (GOx) based on chondroitin sulfate (CS) and Pluronic (F127) to accelerate diabetic infected wound healing. GOx in AZG-Gel was triggered by hyperglycemic environment to reduce local glucose and pH, and simultaneously produced hydrogen peroxide (H2O2) to enable Arg-to release nitric oxide (NO) for inflammation regulation, providing a suitable microenvironment for wound healing. Zinc ions (Zn2+) released from acid-responsive Zn-MOF significantly inhibited the proliferation and biofilm formation of S.aureus and E.coli. AZG-Gel significantly accelerated diabetic infected wound healing by down-regulating pro-inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-6, up-regulating anti-inflammatory factor IL-4, promoting angiogenesis and collagen deposition in vivo. Collectively, our nanoreactor cascade strategy combining "endogenous improvement (reducing glucose and pH)" with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new idea for promoting diabetic infected wound healing by addressing both symptoms and root causes. STATEMENT OF SIGNIFICANCE: A cascade nanoreactor (AZG-Gel) is constructed to solve three key problems in diabetic wound healing, namely, hyperglycemia and high pH microenvironment, bacterial infection and persistent inflammation. Local glucose and pH levels are reduced by GOx to provide a suitable microenvironment for wound healing. The release of Zn2+ significantly inhibits bacterial proliferation and biofilm formation, and NO reduces wound inflammation and promotes angiogenesis. The pH change when AZG-Gel is applied to wounds is expected to enable the visualization of wound healing to guide the treatment of diabetic wound. Our strategy of "endogenous improvement (reducing glucose and pH)" combined with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new way for promoting diabetic wound healing.

15.
Front Oral Health ; 5: 1369494, 2024.
Article in English | MEDLINE | ID: mdl-38774040

ABSTRACT

Objectives: This article reports on four rare cases involving multiple trauma-induced adjacent missing anterior teeth in the maxillary or mandibular region. These cases were successfully treated using a 4-axial implant-based alternative insert and an immediate loading protocol. Material and methods: This series of cases was summarized by retrospective study that 4 patients who received a total of 20 immediately loaded implants. These patients had suffered from trauma-induced loss of 8-9 adjacent anterior teeth. The 4-axial-implants were inserted with the assistance of digital pioneer drill guides. The surgical procedure involved alveolar bone trimming or ultrasonic osteotomy, eliminating the need for traditional large-area bone augmentation. Pre- and post-operative CBCT was matched using DTX Studio Implant software, the deviation of implant between actual position and preoperative design was measured and compared using SPSS software package. Results: The average follow-up duration 48 months after implant prostheses, the cumulative retention rate of the implants was 100%, the marginal bone loss averaged 0.53 mm (SD 0.15 mm), and buccal plate bone loss averaged 0.62 mm (SD 0.41 mm). Conclusions: This retrospective clinical report demonstrates the successful treatment of several patients with multiple adjacent maxillary or mandibular anterior teeth using four implant-supported screws to fix the frame and employing immediate loading. The approach resulted in long-term stable clinical outcomes. Moreover, the method not only shortens the period of edentulism but also facilitates easy disassembly, maintenance, and cleaning. Consequently, it emerges as a highly favorable clinical option for patients suffering from extensive tooth loss.

16.
Sci Rep ; 14(1): 11601, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773250

ABSTRACT

The emergence of convolutional neural network (CNN) and transformer has recently facilitated significant advances in image super-resolution (SR) tasks. However, these networks commonly construct complex structures, having huge model parameters and high computational costs, to boost reconstruction performance. In addition, they do not consider the structural prior well, which is not conducive to high-quality image reconstruction. In this work, we devise a lightweight interactive feature inference network (IFIN), complementing the strengths of CNN and Transformer, for effective image SR reconstruction. Specifically, the interactive feature aggregation module (IFAM), implemented by structure-aware attention block (SAAB), Swin Transformer block (SWTB), and enhanced spatial adaptive block (ESAB), serves as the network backbone, progressively extracts more dedicated features to facilitate the reconstruction of high-frequency details in the image. SAAB adaptively recalibrates local salient structural information, and SWTB effectively captures rich global information. Further, ESAB synergetically complements local and global priors to ensure the consistent fusion of diverse features, achieving high-quality reconstruction of images. Comprehensive experiments reveal that our proposed networks attain state-of-the-art reconstruction accuracy on benchmark datasets while maintaining low computational demands. Our code and results are available at: https://github.com/wwaannggllii/IFIN .

17.
Sci Immunol ; 9(95): eade5705, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787962

ABSTRACT

Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.


Subject(s)
Severe Combined Immunodeficiency , V(D)J Recombination , Humans , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Animals , Mice , V(D)J Recombination/immunology , V(D)J Recombination/genetics , Male , Female , Infant , B-Lymphocytes/immunology , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , T-Lymphocytes/immunology , Child, Preschool , Mutation, Missense
18.
Nat Commun ; 15(1): 4362, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778029

ABSTRACT

Light-induced spin currents with the faster response is essential for the more efficient information transmission and processing. Herein, we systematically explore the effect of light illumination energy and direction on the light-induced spin currents in the W/Y3Fe5O12 heterojunction. Light-induced spin currents can be clearly categorized into two types. One is excited by the low light intensity, which mainly involves the photo-generated spin current from spin photovoltaic effect. The other is caused by the high light intensity, which is the light-thermally induced spin current and mainly excited by spin Seebeck effect. Under low light-intensity illumination, light-thermally induced temperature gradient is very small so that spin Seebeck effect can be neglected. Furthermore, the mechanism on spin photovoltaic effect is fully elucidated, where the photo-generated spin current in Y3Fe5O12 mainly originates from the process of spin precession induced by photons. These findings provide some deep insights into the origin of light-induced spin current.

19.
Angew Chem Int Ed Engl ; : e202407675, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770616

ABSTRACT

Manipulating the crystal orientation plays a crucial role in the conversion efficiency during second harmonic generation (SHG). Here, we provide a new strategy in controlling the surface-dependent anisotropic SHG with the precise design of (101) and (20) MAGeI3 facets. Based on the SHG measurement, the (101) MAGeI3 single crystal exhibits larger SHG (1.3 × (20) MAGeI3). Kelvin probe force microscopy imaging shows a smaller work function for the (101) MAGeI3 compared with the (20), which indirectly demonstrates the stronger intrinsic polarization on the (101) surface. X-ray photoelectron spectroscopy confirms the band bending within the (101) facet. Temperature-dependent steady-state and time-resolved photoluminescence spectroscopy show shorter lifetime and wider emission band in the (101) MAGeI3 single crystal, revealing the higher defect states. Additionally, powder X-ray diffraction patterns show the (101) MAGeI3 possesses larger in-plane polar units [GeI3]- density, which could directly enhance the spontaneous polarization in the (101) facet. Density functional theory (DFT) calculation further demonstrates the higher intrinsic polarization in the (101) facet compared with the (20) facet, and the larger built-in electric field in the (101) facet facilitates surface vacancy defect accumulation. Our work provides a new angle in tuning and optimizing hybrid perovskite-based nonlinear optical materials.

20.
PLoS Genet ; 20(5): e1011273, 2024 May.
Article in English | MEDLINE | ID: mdl-38728357

ABSTRACT

Existing imaging genetics studies have been mostly limited in scope by using imaging-derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-supervised deep representation learning, we propose a new approach, image-based genome-wide association study (iGWAS), for identifying genetic factors associated with phenotypes discovered from medical images using contrastive learning. Using retinal fundus photos, our model extracts a 128-dimensional vector representing features of the retina as phenotypes. After training the model on 40,000 images from the EyePACS dataset, we generated phenotypes from 130,329 images of 65,629 British White participants in the UK Biobank. We conducted GWAS on these phenotypes and identified 14 loci with genome-wide significance (p<5×10-8 and intersection of hits from left and right eyes). We also did GWAS on the retina color, the average color of the center region of the retinal fundus photos. The GWAS of retina colors identified 34 loci, 7 are overlapping with GWAS of raw image phenotype. Our results establish the feasibility of this new framework of genomic study based on self-supervised phenotyping of medical images.


Subject(s)
Fundus Oculi , Genome-Wide Association Study , Phenotype , Retina , Humans , Genome-Wide Association Study/methods , Retina/diagnostic imaging , Male , Polymorphism, Single Nucleotide , Female , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...