Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Expert Opin Drug Deliv ; : 1-16, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38787859

ABSTRACT

INTRODUCTION: Epilepsy, a prevalent neurodegenerative disorder, profoundly impacts the physical and mental well-being of millions globally. Historically, antiseizure drugs (ASDs) have been the primary treatment modality. However, despite the introduction of novel ASDs in recent decades, a significant proportion of patients still experiences uncontrolled seizures. AREAS COVERED: The rapid advancement of nanomedicine in recent years has enabled precise targeting of the brain, thereby enhancing therapeutic efficacy for brain diseases, including epilepsy. EXPERT OPINION: Nanomedicine holds immense promise in epilepsy treatment, including but not limited to enhancing drug solubility and stability, improving drug across blood-brain barrier, overcoming resistance, and reducing side effects, potentially revolutionizing clinical management. This paper provides a comprehensive overview of current epilepsy treatment modalities and highlights recent advancements in nanomedicine-based drug delivery systems for epilepsy control. We discuss the diverse strategies used in developing novel nanotherapies, their mechanisms of action, and the potential advantages they offer compared to traditional treatment methods.

2.
Adv Sci (Weinh) ; : e2400713, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593402

ABSTRACT

Osteoarthritis (OA) is a chronic inflammatory disease characterized by cartilage destruction, synovitis, and osteophyte formation. Disease-modifying treatments for OA are currently lacking. Because inflammation mediated by an imbalance of M1/M2 macrophages in the synovial cavities contributes to OA progression, regulating the M1 to M2 polarization of macrophages can be a potential therapeutic strategy. Basing on the inherent immune mechanism and pathological environment of OA, an immunoglobulin G-conjugated bilirubin/JPH203 self-assembled nanoparticle (IgG/BRJ) is developed, and its therapeutic potential for OA is evaluated. After intra-articular administration, IgG conjugation facilitates the recognition and engulfment of nanoparticles by the M1 macrophages. The internalized nanoparticles disassemble in response to the increased oxidative stress, and the released bilirubin (BR) and JPH203 scavenge reactive oxygen species (ROS), inhibit the nuclear factor kappa-B pathway, and suppress the activated mammalian target of rapamycin pathway, result in the repolarization of macrophages and enhance M2/M1 ratios. Suppression of the inflammatory environment by IgG/BRJ promotes cartilage protection and repair in an OA rat model, thereby improving therapeutic outcomes. This strategy of opsonization involving M1 macrophages to engulf carrier-free BR/JPH203 nanoparticles to suppress inflammation for OA therapy holds great potential for OA intervention and treatment.

3.
J Cell Mol Med ; 28(7): e18173, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494841

ABSTRACT

Osteoarthritis (OA) is a chronic degenerative joint disease that affects worldwide. Oxidative stress plays a critical role in the chronic inflammation and OA progression. Scavenging overproduced reactive oxygen species (ROS) could be rational strategy for OA treatment. Bilirubin (BR) is a potent endogenous antioxidant that can scavenge various ROS and also exhibit anti-inflammatory effects. However, whether BR could exert protection on chondrocytes for OA treatment has not yet been elucidated. Here, chondrocytes were exposed to hydrogen peroxide with or without BR treatment. The cell viability was assessed, and the intracellular ROS, inflammation cytokines were monitored to indicate the state of chondrocytes. In addition, BR was also tested on LPS-treated Raw264.7 cells to test the anti-inflammation property. An in vitro bimimic OA microenvironment was constructed by LPS-treated Raw264.7 and chondrocytes, and BR also exert certain protection for chondrocytes by activating Nrf2/HO-1 pathway and suppressing NF-κB signalling. An ACLT-induced OA model was constructed to test the in vivo therapeutic efficacy of BR. Compared to the clinical used HA, BR significantly reduced cartilage degeneration and delayed OA progression. Overall, our data shows that BR has a protective effect on chondrocytes and can delay OA progression caused by oxidative stress.


Subject(s)
NF-kappa B , Osteoarthritis , Humans , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Bilirubin/pharmacology , Lipopolysaccharides/pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Inflammation/drug therapy , Chondrocytes/metabolism , Interleukin-1beta/pharmacology
4.
Int J Pharm ; 655: 124016, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38503397

ABSTRACT

Triple negative breast cancer (TNBC) presents a formidable challenge due to its low sensitivity to many chemotherapeutic drugs and a relatively low overall survival rate in clinical practice. Photothermal therapy has recently garnered substantial interest in cancer treatment, owing to its swift therapeutic effectiveness and minimal impact on normal cells. Metal-polyphenol nanostructures have recently garnered significant attention as photothermal transduction agents due to their facile preparation and favorable photothermal properties. In this study, we employed a coordinated approach involving Fe3+ and apigenin, a polyphenol compound, to construct the nanostructure (nFeAPG), with the assistance of ß-CD and DSPE-PEG facilitating the formation of the complex nanostructure. In vitro research demonstrated that the formed nFeAPG could induce cell death by elevating intracellular oxidative stress, inhibiting antioxidative system, and promoting apoptosis and ferroptosis, and near infrared spectrum irradiation further strengthen the therapeutic outcome. In 4T1 tumor bearing mice, nFeAPG could effectively accumulate into tumor site and exhibit commendable control over tumor growth. Futher analysis demonstrated that nFeAPG ameliorated the suppressed immune microenvironment by augmenting the response of DC cells and T cells. This study underscores that nFeAPG encompasses a multifaceted capacity to combat TNBC, holding promise as a compelling therapeutic strategy for TNBC treatment.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Photothermal Therapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Apigenin , Iron , Cell Line, Tumor , Polyphenols , Tumor Microenvironment
5.
Zhongguo Zhong Yao Za Zhi ; 49(2): 471-486, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403323

ABSTRACT

This study combined network pharmacology, molecular docking, and in vitro experiments to explore the potential mechanism of the active components of the n-butanol fraction of Wenxia Formula(NWXF) combined with gefitinib(GEF) in treating non-small cell lung cancer(NSCLC). Ultra-performance liquid chromatography-quadrupole Orbitrap mass spectrometry(UPLC-Q-Orbitrap MS) was employed to detect the main chemical components of NWXF. The active components of NWXF were retrieved from SwissADME, and the candidate targets of these active components were retrieved from SwissTargetPrediction. Online Mendelian Inheritance in Man(OMIM) and GeneCards were searched for the targets of NSCLC. Cytoscape 3.9.0 and STRING were employed to build the protein-protein interaction(PPI) network with the common targets shared by NWXF and NSCLC. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment were performed in DAVID to predict the potential mechanisms. Finally, molecular docking between the main active ingredients and key targets was conducted in SYBYL-X 2.0. The methyl thiazolyl tetrazolium(MTT) assay was employed to evaluate the inhibitory effects of NWXF and/or GEF on the proliferation of human non-small cell lung cancer cells(A549 and PC-9). Additionally, the impact of NWXF on human embryonic lung fibroblast cells(MRC-5) was assessed. The effectiveness of the drug combination was evaluated based on the Q value. The terminal-deoxynucleoitidyl transferase mediated nick-end labeling(TUNEL) assay was employed to examine the apoptosis of A549 and PC-9 cells treated with NWXF and/or GEF. Quantitative real-time PCR(qRT-PCR) was employed to measure the mRNA levels of epidermal growth factor receptor(EGFR), c-Jun N-terminal kinase(JNK), and Bcl2-associated X protein(Bax) in the A549 and PC-9 cells treated with NWXF and/or GEF. Western blot was employed to determine the protein levels of EGFR, p-EGFR, JNK, p-JNK, and Bax in the A549 and PC-9 cells treated with NWXF and/or GEF. A total of 77 active components, 488 potential targets, and 49 key targets involved in the treatment of NSCLC with NWXF were predicted. The results of GO annotation showed that NWXF may treat NSCLC by regulating the biological processes such as cell proliferation, apoptosis, and protein phosphorylation. KEGG enrichment revealed that the key targets of NWXF in treating NSCLC were enriched in the mitogen-activated protein kinase(MAPK), phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT), hypoxia-inducible factor-1(HIF-1), and microRNA-related signaling pathways. Molecular docking results showed that 91.9% of the docking scores were greater than 5, indicating the strong binding capability between main active components and key targets. The cell experiments demonstrated that NWXF combined with GEF synergistically inhibited the proliferation, promoted the apoptosis, decreased p-EGFR/EGFR and p-JNK/JNK values, down-regulated the mRNA levels of EGFR and JNK, and up-regulated the mRNA and protein levels of Bax in A549 and PC-9 cells. In conclusion, NWXF combined with GEF can regulate the EGFR/JNK pathway to promote the apoptosis of NSCLC cells, thus treating NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Gefitinib/pharmacology , 1-Butanol , bcl-2-Associated X Protein , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors , RNA, Messenger , Drugs, Chinese Herbal/pharmacology
6.
Polymers (Basel) ; 16(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38256968

ABSTRACT

A novel polymeric microcapsule was designed and synthesized using perfluoropolyether silane (PFPE-silane) as a superhydrophobic core material and ethyl cellulose (EC) as a shell material. The effects of the stirring rate and the core-to-shell ratio on the synthesized microcapsules were investigated. The physicochemical properties of the polymeric microcapsules were evaluated using scanning electron microscopy, fourier transform infrared spectroscopy, thermogravimetric analysis, laser particle size analysis, and wettability analysis. The results showed that when the stirring rate was 650 rpm and the core-to-shell ratio was 1:1, well-distributed and uniformly dispersed microcapsules could be obtained. The results also indicated that the prepared polymeric microcapsules were spherical particles with micropores on the surface, and they had an average particle size of 165.71 µm. The EC shells could effectively prevent the thermal decomposition of PFPE-silane during cement hydration, and the PFPE-silane also exhibited excellent hydrophobicity. The specially designed structure of this polymeric microcapsule suggests its potential for enhancing the corrosion resistance of reinforced concrete structures.

7.
IEEE Trans Image Process ; 33: 408-422, 2024.
Article in English | MEDLINE | ID: mdl-38133987

ABSTRACT

The accelerated proliferation of visual content and the rapid development of machine vision technologies bring significant challenges in delivering visual data on a gigantic scale, which shall be effectively represented to satisfy both human and machine requirements. In this work, we investigate how hierarchical representations derived from the advanced generative prior facilitate constructing an efficient scalable coding paradigm for human-machine collaborative vision. Our key insight is that by exploiting the StyleGAN prior, we can learn three-layered representations encoding hierarchical semantics, which are elaborately designed into the basic, middle, and enhanced layers, supporting machine intelligence and human visual perception in a progressive fashion. With the aim of achieving efficient compression, we propose the layer-wise scalable entropy transformer to reduce the redundancy between layers. Based on the multi-task scalable rate-distortion objective, the proposed scheme is jointly optimized to achieve optimal machine analysis performance, human perception experience, and compression ratio. We validate the proposed paradigm's feasibility in face image compression. Extensive qualitative and quantitative experimental results demonstrate the superiority of the proposed paradigm over the latest compression standard Versatile Video Coding (VVC) in terms of both machine analysis as well as human perception at extremely low bitrates (< 0.01 bpp), offering new insights for human-machine collaborative compression.


Subject(s)
Data Compression , Humans , Data Compression/methods , Signal Processing, Computer-Assisted , Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Video Recording/methods
8.
Front Plant Sci ; 14: 1284403, 2023.
Article in English | MEDLINE | ID: mdl-38093996

ABSTRACT

Plant height (PH) and ear height (EH) are important traits associated with biomass, lodging resistance, and grain yield in maize. There were strong effects of genotype x environment interaction (GEI) on plant height and ear height of maize. In this study, 203 maize inbred lines were grown at five locations across China's Spring and Summer corn belts, and plant height (PH) and ear height (EH) phenotype data were collected and grouped using GGE biplot. Five locations fell into two distinct groups (or mega environments) that coincide with two corn ecological zones called Summer Corn Belt and Spring Corn Belt. In total, 73,174 SNPs collected using GBS sequencing platform were used as genotype data and a recently released multi-environment GWAS software package IIIVmrMLM was employed to identify QTNs and QTN x environment (corn belt) interaction (QEIs); 12 and 11 statistically significant QEIs for PH and EH were detected respectively and their phenotypic effects were further partitioned into Add*E and Dom*E components. There were 28 and 25 corn-belt-specific QTNs for PH and EH identified, respectively. The result shows that there are a large number of genetic loci underlying the PH and EH GEIs and IIIVmrMLM is a powerful tool in discovering QTNs that have significant QTN-by-Environment interaction. PH and EH candidate genes were annotated based on transcriptomic analysis and haplotype analysis. EH related-QEI S10_135 (Zm00001d025947, saur76, small auxin up RNA76) and PH related-QEI S4_4 (Zm00001d049692, mads32, encoding MADS-transcription factor 32), and corn-belt specific QTNs including S10_4 (Zm00001d023333, sdg127, set domain gene127) and S7_1 (Zm00001d018614, GLR3.4, and glutamate receptor 3.4 or Zm00001d018616, DDRGK domain-containing protein) were reported, and the relationship among GEIs, QEIs and phenotypic plasticity and their biological and breeding implications were discussed.

9.
Article in English | MEDLINE | ID: mdl-37943632

ABSTRACT

Perovskite-type LaFeO3 is regarded as a potentially efficient visible-light photocatalyst owing to its narrow bandgap energy and unique photovoltaic properties. However, the insufficient active sites and the unsatisfactory utilization of photogenerated carriers severely restrict the realistic application of pure LaFeO3. Herein, we fabricated a series of LaxFeO3-δ nanofibers (x = 1.0, 0.95, 0.9, 0.85, 0.8) with an A-site defect via sol-gel combined with the electrospinning technique. Wherein, the nonstoichiometric La0.9FeO3-δ possessed the highest CH3OH yield of 5.30 µmol·g-1·h-1 with good chemical stability. A series of advanced characterizations were applied to investigate the physicochemical properties and charge-carrier behaviors of the samples. The results illustrated that the one-dimensional (1D) nanostructures combined with the appropriate concentration of vacancy defects on the surface contributed to the radial migration of photogenerated carriers, inhibited the recombination of carriers, and provided more CO2 adsorption-activation sites. Furthermore, density functional theory (DFT) calculations were employed to reveal the influence mechanism of vacancy defects on LaFeO3. This work provides a strategy to enhance the performance of photocatalytic CO2 reduction by modulating the induced oxygen vacancies caused by the A-site defect in perovskite oxides.

10.
Front Plant Sci ; 14: 1221395, 2023.
Article in English | MEDLINE | ID: mdl-37810381

ABSTRACT

Southern corn rust (SCR) caused by Puccinia polysora Underw is a major disease leading to severe yield losses in China Summer Corn Belt. Using six multi-locus GWAS methods, we identified a set of SCR resistance QTNs from a diversity panel of 140 inbred lines collected from China Summer Corn Belt. Thirteen QTNs on chromosomes 1, 2, 4, 5, 6, and 8 were grouped into three types of allele effects and their associations with SCR phenotypes were verified by post-GWAS case-control sampling, allele/haplotype effect analysis. Relative resistance (RRR) and relative susceptibility (RRs) catering to its inbred carrier were estimated from single QTN and QTN-QTN combos and epistatitic effects were estimated for QTN-QTN combos. By transcriptomic annotation, a set of candidate genes were predicted to be involved in transcriptional regulation (S5_145, Zm00001d01613, transcription factor GTE4), phosphorylation (S8_123, Zm00001d010672, Pgk2- phosphoglycerate kinase 2), and temperature stress response (S6_164a/S6_164b, Zm00001d038806, hsp101, and S5_211, Zm00001d017978, cellulase25). The breeding implications of the above findings were discussed.

11.
J Control Release ; 362: 468-478, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37666304

ABSTRACT

Psoriasis is a multifactorial immuno-inflammatory skin disease, characterized by keratinocyte hyperproliferation and aberrant immune activation. Although the pathogenesis is complex, the interactions among inflammation, Th17-mediated immune activation, and keratinocyte hyperplasia are considered to play a crucial role in the occurrence and development of psoriasis. Therefore, pharmacological interventions on the "inflammation-Th17-keratinocyte" vicious cycle may be a potential strategy for psoriasis treatment. In this study, JPH203 (a specific inhibitor of LAT1, which engulfs leucine to activate mTOR signaling)-loaded, ultraviolet B (UVB) radiation-induced, keratinocyte-derived extracellular vesicles (J@EV) were prepared for psoriasis therapy. The EVs led to increased interleukin 1 receptor antagonist (IL-1RA) content due to UVB irradiation, therefore not only acting as a carrier for JPH203 but also functioning through inhibiting the IL-1-mediated inflammation cascade. J@EV effectively restrained the proliferation of inflamed keratinocytes via suppressing mTOR-signaling and NF-κB pathway in vitro. In an imiquimod-induced psoriatic model, J@EV significantly ameliorated the related symptoms as well as suppressed the over-activated immune reaction, evidenced by the decreased keratinocyte hyperplasia, Th17 expansion, and IL17 release. This study shows that J@EV exerts therapeutic efficacy for psoriasis by suppressing LAT1-mTOR involved keratinocyte hyperproliferation and Th17 expansion, as well as inhibiting IL-1-NF-κB mediated inflammation, representing a novel and promising strategy for psoriasis therapy.

12.
Article in English | MEDLINE | ID: mdl-37610813

ABSTRACT

A novel bacterial strain, N1Y112T, was isolated from coastal sediment collected in Weihai, PR China. This Gram-stain-negative, facultatively anaerobic, motile rod-shaped bacterium exhibited the ability to oxidize thiosulphate to sulphate and reduce nitrate to ammonia through its Sox system and nitrate reduction pathway, respectively. The strain grew at 20-35 °C (optimum, 28 °C), pH 6.0-10.0 (optimum, pH 7.5) and in the presence of 1.0-5.0 % (w/v) NaCl (optimum, 3.0 %). Major fatty acids present in the strain included summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0. Its polar lipid profile consisted of one phosphatidylethanolamine, two unknown aminolipids, one aminophosphoglycolipid, one diphosphatidylglycerol, one phosphatidylglycerol, two unknown phospholipids and two unknown lipids. Strain N1Y112T contained ubiquinone-7 and ubiquinone-8 as isoprenoid quinones, with a genomic G+C content of 50.6 mol%. Based on phylogenetic analysis, strain N1Y112T clustered with Pontibacterium granulatum JCM 30316T being its closest relative at 97.1 % 16S rRNA gene sequence similarity. The average nucleotide identity and digital DNA-DNA hybridization values were 77.1 and 20.7 %, respectively, which suggest significant differences between genomes of N1Y112T and P. granulatum JCM 30316T. Based on the findings from its phenotypic, genotypic and phylogenetic analyses, N1Y112T is considered to represent a novel species of the genus Pontibacterium, for which the name Pontibacterium sinense sp. nov. is proposed. The type strain is N1Y112T (=KCTC 72927T=MCCC 1H00429T).


Subject(s)
Nitrates , Ubiquinone , Thiosulfates , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria , Oxidation-Reduction
13.
Sci Total Environ ; 897: 165442, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37442465

ABSTRACT

In this study, the effect of cold isostatic pressure (CIP) pretreatment on the physicochemical properties and subsequent anaerobic digestion (AD) performance of corn straw (CS) was explored. The CS was subjected to CIP pretreatment by pressures of 200, 400 and 600 MPa, respectively, while AD was carried out at medium temperature (35 ± 2 °C). The results showed that CIP pretreatment disrupted the dense structure of the CS and altered the crystallinity index and surface hydrophobicity of the CS, thereby affecting the AD process. The presence of CIP pretreatment increased the initial reducing sugar concentration by 0.11-0.27 g/L and increased the maximum volatile fatty acids content by 112.82-436.64 mg/L, which facilitated the process of acidification and hydrolysis of the AD. It was also observed that the CIP pretreatment maintained the pH in the range of 6.37-7.30, maintaining the stability of the overall system. Moreover, the cumulative methane production in the CIP pretreatment group increased by 27.17 %-64.90 % compared to the control group. Analysis of the microbial results showed that CIP pretreatment increased the abundance of cellulose degrading bacteria Ruminofilibacter from 21.50 % to 27.53 % and acetoclastic methanogen Methanosaeta from 45.48 % to 56.92 %, thus facilitating the hydrolysis and methanogenic stages. The energy conversion analysis showed that CIP is a green and non-polluting pretreatment strategy for the efficient AD of CS to methane.


Subject(s)
Cellulose , Zea mays , Anaerobiosis , Zea mays/chemistry , Bacteria , Methane , Bioreactors , Biofuels
14.
Colloids Surf B Biointerfaces ; 228: 113438, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37421763

ABSTRACT

Cancer, a disease notorious for its difficult therapy regimen, has long puzzled researchers. Despite attempts to cure cancer using surgery, chemotherapy, radiotherapy, and immunotherapy, their effectiveness is limited. Recently, photothermal therapy (PTT), a rising strategy, has gained attention. PTT can increase the surrounding temperature of cancer tissues and cause damage to them. Fe is widely used in PTT nanostructures due to its strong chelating ability, good biocompatibility, and the potential to induce ferroptosis. In recent years, many nanostructures incorporating Fe3+ have been developed. In this article, we summarize PTT nanostructures containing Fe and introduce their synthesis and therapy strategy. However, PTT nanostructures containing Fe are still in their infancy, and more effort must be devoted to improving their effectiveness so that they can eventually be used in clinics.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Nanostructures , Neoplasms , Humans , Photothermal Therapy , Nanostructures/chemistry , Phototherapy , Neoplasms/drug therapy
15.
Int J Pharm ; 641: 123082, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37244464

ABSTRACT

Oxaliplatin (OXA) resistance remains the major obstacle to the successful chemotherapy of colorectal cancer (CRC). As a self-protection mechanism, autophagy may contribute to tumor drug resistance, therefore autophagy suppression could be regarded as a possible treatment option in chemotherapy. Cancer cells, especially drug-resistant tumor cells, increase their demand for specific amino acids by expanding exogenous supply and up-regulating de novo synthesis, to meet the needs for excessive proliferation. Therefore, it is possible to inhibit cancer cell proliferation through pharmacologically blocking the entry of amino acid into cancer cells. SLC6A14 (ATB0,+) is an essential amino acid transporter, that is often abnormally up-regulated in most cancer cells. Herein, in this study, we designed oxaliplatin/berbamine-coloaded, ATB0,+-targeted nanoparticles ((O + B)@Trp-NPs) to therapeutically target SLC6A14 (ATB0,+) and inhibit cancer proliferation. The (O + B)@Trp-NPs utilize the surface-modified tryptophan to achieve SLC6A14-targeted delivery of Berbamine (BBM), a compound that is found in a number of plants used in traditional Chinese medicine, which could suppress autolysosome formation though impairing autophagosome-lysosome fusion. We verified the feasibility of this strategy to overcome the OXA resistance during colorectal cancer treatment. The (O + B)@Trp-NPs significantly inhibited the proliferation and decreased the drug resistance of resistant colorectal cancer cells. In vivo, (O + B)@Trp-NPs greatly suppressed the tumor growth in tumor-bearing mice, which is consistent with the in vitro data. This research offers a unique and promising chemotherapeutic treatment for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Nanoparticles , Animals , Mice , Oxaliplatin/pharmacology , Drug Resistance, Neoplasm , Autophagy , Colorectal Neoplasms/drug therapy , Cell Line, Tumor
16.
Adv Healthc Mater ; 12(24): e2300571, 2023 09.
Article in English | MEDLINE | ID: mdl-37236618

ABSTRACT

Acute liver failure (ALF) is a severe liver disease caused by many reasons. One of them is the overdosed acetaminophen (APAP), which is metabolized into N-acetyl-p-benzoquinone imine (NAPQI), an excessive toxic metabolite, by CYP2E1, resulting in excessive reactive oxygen species (ROS), exhausted glutathione (GSH), and thereafter hepatocyte necrosis. N-acetylcysteine is the Food and Drug Administration-approved drug for detoxification of APAP, but it has limited clinical application due to the short therapeutic time window and concentration-related adverse effects. In this study, a carrier-free and bilirubin dotted nanoparticle (B/BG@N) is developed, which is formed using bilirubin and 18ß-Glycyrrhetinic acid, and bovine serum albumin (BSA) is then adsorbed to mimic the in vivo behavior of the conjugated bilirubin for hitchhiking. The results demonstrate that B/BG@N can effectively reduce the production of NAPQI as well as exhibit antioxidant effects against intracellular oxidative stress via regulating the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signal axis and reducing the production of inflammatory factors. In vivo study shows that B/BG@N can effectively improve the clinical symptom of the mice model. This study suggests that B/BG@N own increases circulation half-life, improves accumulation in the liver, and dual detoxification, providing a promising strategy for clinical ALF treatment.


Subject(s)
Acetaminophen , Liver Failure, Acute , Animals , Mice , Acetaminophen/adverse effects , Acetaminophen/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/pharmacology , Reactive Oxygen Species/metabolism , Biomimetics , Liver/metabolism , Liver Failure, Acute/drug therapy , Liver Failure, Acute/chemically induced , Liver Failure, Acute/metabolism , Glutathione/metabolism , Bilirubin/metabolism , Bilirubin/pharmacology
17.
Asian J Pharm Sci ; 18(2): 100782, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36845839

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by erythema, scaling, and skin thickening. Topical drug application is recommended as the first-line treatment. Many formulation strategies have been developed and explored for enhanced topical psoriasis treatment. However, these preparations usually have low viscosity and limited retention on the skin surface, resulting in low drug delivery efficiency and poor patient satisfaction. In this study, we developed the first water-responsive gel (WRG), which has a distinct water-triggered liquid-to-gel phase transition property. Specifically, WRG was kept in a solution state in the absence of water, and the addition of water induced an immediate phase transition and resulted in a high viscosity gel. Curcumin was used as a model drug to investigate the potential of WRG in topical drug delivery against psoriasis. In vitro and in vivo data showed that WRG formulation could not only extend skin retention but also facilitate the drug permeating across the skin. In a mouse model of psoriasis, curcumin loaded WRG (CUR-WRG) effectively ameliorated the symptoms of psoriasis and exerted a potent anti-psoriasis effect by extending drug retention and facilitating drug penetration. Further mechanism study demonstrated that the anti-hyperplasia, anti-inflammation, anti-angiogenesis, anti-oxidation, and immunomodulation properties of curcumin were amplified by enhanced topical drug delivery efficiency. Notably, neglectable local or systemic toxicity was observed for CUR-WRG application. This study suggests that WRG is a promising formulation for topically psoriasis treatment.

18.
Respir Res ; 24(1): 56, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36803977

ABSTRACT

Obesity increases the severity of airway hyperresponsiveness (AHR) in individuals with asthma, but the mechanism is not well elucidated. G-protein coupled receptor 40 (GPR40) has been found to induce airway smooth muscle contraction after activated by long-chain fatty acids (LC-FFAs), suggesting a close correlation between GPR40 and AHR in obese. In this study, C57BL/6 mice were fed a high-fat diet (HFD) to induce obesity with or without ovalbumin (OVA) sensitization, the regulatory effects of GPR40 on AHR, inflammatory cells infiltration, and the expression of Th1/Th2 cytokines were evaluated by using a small-molecule antagonist of GPR40, DC260126. We found that the free fatty acids (FFAs) level and GPR40 expression were greatly elevated in the pulmonary tissues of obese asthmatic mice. DC260126 greatly reduced methacholine-induced AHR, ameliorated pulmonary pathological changes and decreased inflammatory cell infiltration in the airways in obese asthma. In addition, DC260126 could down-regulate the levels of Th2 cytokines (IL-4, IL-5, and IL-13) and pro-inflammatory cytokines (IL-1ß, TNF-α), but elevated Th1 cytokine (IFN-γ) expression. In vitro, DC260126 could remarkedly reduce oleic acid (OA)-induced cell proliferation and migration in HASM cells. Mechanistically, the effects that DC260126 alleviated obese asthma was correlated with the down-regulation of GTP-RhoA and Rho-associated coiled-coil-forming protein kinase 1 (ROCK1). Herein, we proved that targeting of GPR40 with its antagonist helped to mitigate multiple parameters of obese asthma effectively.


Subject(s)
Asthma , Receptors, G-Protein-Coupled , Respiratory Hypersensitivity , Animals , Mice , Asthma/metabolism , Cytokines/metabolism , Disease Models, Animal , Lung/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Ovalbumin , Receptors, G-Protein-Coupled/metabolism , Respiratory Hypersensitivity/metabolism , Signal Transduction
19.
Adv Healthc Mater ; 12(13): e2203397, 2023 05.
Article in English | MEDLINE | ID: mdl-36690435

ABSTRACT

Psoriasis is an immune-mediated chronic inflammatory skin disorder characterized by epidermal hyperplasia and infiltration of inflammatory cells. Even though the pathogenesis remains unclear, T helper 17 (Th17) cells-mediated inflammation and keratinocyte-involved proliferation are considered to play key roles during the occurrence and the development of psoriasis. Therefore, suppressing the infiltration/function of Th17 and the abnormal hyperplasia of keratinocytes can be a rational strategy for ameliorating and treating psoriasis. In this study, a self-assembly nanoparticle (BVn) is developed with bilirubin (an endogenous antioxidant) and V9302 (a blocker of ASCT2, an amino acid transporter mediating glutamine influx for providing energy and activating mammalian target of rapamycin [mTOR] pathway) to intervene the local metabolism and alleviate oxidative stress for psoriasis treatment. BVn effectively suppresses inflammatory keratinocyte proliferation and scavenges excess reactive oxygen species (ROS). In the in vivo psoriasis mouse model, BVn shows increased permeation and delayed retention in the psoriatic lesion and reverses the psoriasis-related symptoms, evidenced by the normalized keratinocyte condition and decreased Th17 infiltration/activation. Mechanism study indicates that BVn not only cut off the energy supply but also suppressed cell proliferation or lymph cell expansion by deactivating mTOR pathway, besides alleviated oxidative stress. BVn-based glutamine metabolism modulation strategy offers a promising strategy for psoriasis therapy.


Subject(s)
Nanoparticles , Psoriasis , Mice , Animals , Glutamine/metabolism , Bilirubin/metabolism , Hyperplasia/metabolism , Hyperplasia/pathology , Psoriasis/drug therapy , Psoriasis/metabolism , Psoriasis/pathology , Keratinocytes/metabolism , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism , Mammals/metabolism
20.
Eur J Pharm Biopharm ; 183: 33-46, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563886

ABSTRACT

Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease. It weakens the motor function of patients and imposes a significant economic burden on society. The current medications commonly used in clinical practice do not meet the need for the treatment of OA. Recombinant protein drugs (RPDs) can treat OA by inhibiting inflammatory pathways, regulating catabolism/anabolism, and promoting cartilage repair, thereby showing promise as disease-modifying OA drugs (DMOADs). However, the rapid clearance and short half-life of them in the articular cavity limit their clinical translation. Therefore, the reliable drug delivery systems for extending drug treatment are necessary for the further development. This review introduces RPDs with therapeutic potential for OA, and summarizes their research progress on related drug delivery systems, and make proper discussion on the certain keys for optimal development of this area.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Osteoarthritis/drug therapy , Drug Delivery Systems , Recombinant Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...