Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473597

ABSTRACT

The continuous growth of industrial solid waste production has generated many environmental problems. We evaluated the potential of industrial solid waste as a substitute filler in asphalt mastic, with the aim of increasing the use of sustainable road construction materials. In this study, X-ray fluorescence spectroscopy (XRF) and scanning electron microscopy (SEM) were used to characterize the oxide composition and micromorphology of limestone (LS), red mud (RM), steel slag (SS), and ground granulated blast-furnace slag (GGBFS). Four asphalt mastics containing LS, RM, SS, and GGBFS with a filler-to-binder weight ratio of one were prepared. An evaluation of the rheology and wetting of the solid-waste-filler asphalt mastic was conducted using a frequency sweep, temperature sweep, linear amplitude sweep (LAS), multiple stress creep and recovery (MSCR), and surface free energy (SFE) methods. The results showed that SS increased the complex modulus, elastic component of the asphalt mastic and decreased the nonrecoverable creep compliance at stress levels of 0.1 and 3.2 kPa, which improved the rutting resistance of the asphalt mastic and reduced deformation under high-temperature conditions. The RM and GGBFS increased the fatigue performance of the asphalt mastic under strain loading, enhanced its fatigue life, and maintained good performance under long-term loading. The dispersive component of the SFE parameter of the solid-waste-filler asphalt mastic was larger than the polar component for the largest share of the surface energy composition. The SFE of the asphalt mastic prepared from the industrial solid-waste filler was reduced; however, the difference was insignificant compared to the limestone asphalt mastic. Solid-waste-filler asphalt mastic has performance characteristics, and its actual application can be based on different performance characteristics to select an appropriate solid-waste filler. The results of this study provide new technological solutions for solving the utilization rate of solid waste materials and sustainable road construction in the future.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2269-2280, 2024 04.
Article in English | MEDLINE | ID: mdl-37812238

ABSTRACT

Recent studies have shown that dysregulation of transglutaminase 3 (TGM3) is related to the aggressive progression of several cancer types. Our study aimed to determine the function of TGM3 in cervical cancer (CC) tumorigenesis. Gene expression profiles GSE63514, GSE9750, GSE46857 and GSE67522 were obtained from the Gene Expression Omnibus (GEO) database. Overlapping differential expressed genes (DEGs) in CC were screened using GEO2R online tool and Venn diagram software. The Kaplan-Meier plotter was used to determine overall survival. TGM3 expression was analyzed based on GEO and The Cancer Genome Atlas (TCGA) databases, qRT-PCR and western blot analyses. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. The half-maximal inhibitory concentration (IC50) value of cisplatin and cell apoptosis was assessed by CCK-8 and TUNEL assays, respectively. P-glycoprotein (P-gp) expression and the changes of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway were examined using western blot analysis. We identified 3 overlapping DEGs, including TGM3, glutathione peroxidase 3 (GPX3), and alpha B-crystallin (CRYAB), which were downregulated in CC tissues. TGM3 expression was reduced in CC cells and related to the poor prognosis of CC patients. TGM3 overexpression retarded the proliferation, reduced IC50 value of cisplatin, accelerated cisplatin-induced apoptosis, and inhibited cisplatin-induced P-gp level in CC cells. Furthermore, TGM3 overexpression suppressed the PI3K/Akt pathway in CC cells. Moreover, treatment with 740Y-P, a PI3K activator, abolished the effect of TGM3 overexpression on proliferation and cisplatin resistance in CC cells. In conclusion, overexpression of TGM3 suppressed proliferation and cisplatin resistance in CC cells by blocking the PI3K/Akt pathway.


Subject(s)
Cisplatin , Peptide Fragments , Receptors, Platelet-Derived Growth Factor , Uterine Cervical Neoplasms , Female , Humans , Cisplatin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Uterine Cervical Neoplasms/metabolism , Signal Transduction , Sincalide/pharmacology , Cell Line, Tumor , Cell Proliferation , Transglutaminases/metabolism , Transglutaminases/pharmacology , Apoptosis
3.
Int J Biol Macromol ; 251: 126322, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37591436

ABSTRACT

There are significant differences in meat production, growth rate and other traits between Western commercial pigs and Chinese local pigs. Comparative transcriptome approaches have identified many coding and non-coding candidate genes associated various traits. However, the expression and function of circular RNAs (circRNAs) in different pig tissues are largely unknown. In this study, we conducted a comprehensive analysis of the genome-wide circRNA expression profile across ten tissues in Luchuan (a Chinese local breed) and Duroc (a Western commercial breed) pigs. We identified a total of 56,254 circRNAs, of which 42.9 % were not previously annotated. We found that 33.7 % of these circRNAs were differentially expressed. Enrichment analysis revealed that differentially expressed circRNAs might contribute to the phenotypic differentiation between Luchuan and Duroc pigs. We identified 538 tissue-specific circRNAs, most of which were specifically expressed in the brain and skeletal muscle. Competitive endogenous RNA network analysis suggested that skeletal muscle-specific circPSME4 was co-expressed with MYOD1 and targeted by ssc-miR-181d-3p. Functional analysis revealed that circPSME4 knockdown could promote the proliferation and differentiation of myoblasts. Together, our findings provide valuable resources of circRNAs for animal breeding and biomedical research. We demonstrated that circPSME4 is a novel regulator of skeletal muscle development.

4.
Materials (Basel) ; 16(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049078

ABSTRACT

The ultraviolet (UV) aging of asphalt is an important factor affecting the long-term performance of asphalt pavement, especially in high altitude cold regions. The current studies have reported that styrene butadiene rubber-modified asphalt (SBRMA) has a good cracking resistance at low temperatures. In addition, polyphosphoric acid (PPA) is an effective modifier that can enhance the anti-UV aging properties of asphalt. However, the understanding of the improvement mechanism of PPA on the anti-aging of SBRMA remains unclear. Therefore, this study aimed to evaluate the effect of PPA on the UV aging resistance of SBRMA. The rheological properties of PEN90 asphalt(90#A), SBRMA, and PPA/SBR modified (PPA/SBR-MA) before and after UV aging were evaluated by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The molecular weight and chemical structure of 90#A, SBRMA, and PPA/SBR-MA were determined by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC), and the interaction and modification mechanism of the modifiers were analyzed. The rheological analysis shows that the high and low temperature performances of SBRMA are improved by adding PPA, and PPA also significantly reduces the sensitivity of SBRMA to UV aging. The microscopic test results show that PPA has a complex chemical reaction with SBRMA, which results in changes in its molecular structure. This condition enhances SBRMA with a more stable dispersion system, inhibits the degradation of the polymer macromolecules of the SBR modifier, and slows down the aging process of base asphalt. In general, PPA can significantly improve the anti-UV aging performance of SBRMA. The Pearson correlations between the aging indexes of the macro and micro properties are also significant. In summary, PPA/SBRMA material is more suitable for high altitude cold regions than SBRMA, which provides a reference for selecting and designing asphalt pavement materials in high altitude cold regions.

5.
Environ Toxicol ; 38(3): 685-693, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36454672

ABSTRACT

Human discs large-associated protein 5 (DLGAP5), a microtubule-associated protein, has been reported to be upregulated in several tumors. However, the role of DLGAP5 in endometrial cancer (EC) progression and the related underlying mechanism were still unknown. A bioinformatics analysis was performed to analyze the expression and prognostic significance of DLGAP5 in EC tissues using TCGA, CPTAC, Human Protein Atlas, and GSE63678 databases, UALCAN web tool, and the Kaplan-Meier plotter. Effects of DLGAP on EC cell malignant properties were evaluated by CCK-8, flow cytometry analysis, TUNEL assay, caspase-3 activity assay, and Transwell invasion assay. The expression of DLGAP5, Wnt3, c-Myc, Ki67, and cleaved caspase-3 was detected by western blot analysis. DLGAP5 was highly expressed and correlated with poor prognosis in EC patients. DLGAP5 knockdown inhibited proliferation and invasion, triggered apoptosis, and increased caspase-3 activity in EC cells. Additionally, DLGAP5 knockdown inactivated the Wnt/ß-catenin signaling pathway in EC cells. Moreover, ß-catenin overexpression abolished the effects of DLGAP5 knockdown on the malignant phenotypes of EC cells. DLGAP5 silencing suppressed the malignant properties in EC cells by inactivating the Wnt/ß-catenin pathway.


Subject(s)
Endometrial Neoplasms , beta Catenin , Female , Humans , Caspase 3/genetics , Caspase 3/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cell Proliferation/genetics , Endometrial Neoplasms/genetics , Endometrium/metabolism , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics
6.
Materials (Basel) ; 15(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36233983

ABSTRACT

Currently, aged recycled asphalt pavements have re-recycling demands, but the evolution mechanism of re-recycled asphalt binder properties is still unclear. Therefore, this study analyzes the rheological properties and microstructure of re-recycled asphalt by dynamic shear rheometer (DSR), bending beams rheometer (BBR), atomic force microscope (AFM), and Fourier transform infrared spectroscopy (FTIR). The macro performance results show that re-recycling improves high-temperature performance and reduces fatigue and low-temperature performance. In addition, the aged re-recycled asphalt's ΔTc ≤ -2.5 °C, has a risk of low-temperature cracking. The micro results show that the adhesion between asphalt and aggregate decreases as the recycling times increase; the re-recycled asphalt mixture has a greater adhesion cracking risk. Some macro-micro experimental results are correlated. Aging accelerates the decay of rheological properties of re-recycled asphalt by increasing the microscopic roughness and carbonyl index of re-recycled asphalt. It indicates that re-recycling reduces the aging resistance of asphalt. Furthermore, the properties of recycled asphalt are strongly correlated with aging functional groups, roughness, and surface energy; the microstructural changes significantly influence the rheology properties of asphalt.

SELECTION OF CITATIONS
SEARCH DETAIL
...