Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer ; 23(1): 98, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730483

ABSTRACT

The efficacy of Adoptive Cell Transfer Therapy (ACT) in combating hematological tumors has been well-documented, yet its application to solid tumors faces formidable hurdles, chief among them being the suboptimal therapeutic response and the immunosuppressive milieu within the tumor microenvironment (TME). Recently, Garcia, J. et al. present compelling findings shedding light on potential breakthroughs in this domain. Their investigation reveals the pronounced augmentation of anti-tumor activity in CAR T cells through the introduction of a T cell neoplasm fusion gene, CARD11-PIK3R3. The incorporation of this gene into engineered T cell therapy holds promise as a formidable tool in the arsenal of cancer immunotherapy. The innovative strategy outlined not only mitigates the requirement for high doses of CAR T cells but also enhances tumor control while exhibiting encouraging safety profiles. The exploration of the CARD11-PIK3R3 fusion gene represents an advancement in our approach to bolstering the anti-tumor efficacy of immunotherapeutic interventions. Nonetheless, the imperative for further inquiry to ascertain its transfection efficiency and long-term safety cannot be overstated. Nevertheless, this seminal investigation offers a beacon of hope in surmounting the formidable treatment impediments posed by solid tumors, paving the way for a transformative era in cancer therapeutics.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Neoplasms/therapy , Neoplasms/genetics , Neoplasms/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Tumor Microenvironment/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals
2.
Biomed Pharmacother ; 175: 116681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705128

ABSTRACT

GCN1 is a highly conserved protein present widely across eukaryotes. As an upstream activator of protein kinase GCN2, GCN1 plays a pivotal role in integrated stress responses, such as amino acid starvation and oxidative stress. Through interaction with GCN2, GCN1 facilitates the activation of GCN2, thus initiating downstream signaling cascades in response to cellular stressors. In these contexts, the activation of GCN2 necessitates the presence and action of GCN1. Notably, GCN1 also operates as a ribosome collision sensor, contributing significantly to the translation quality control pathway. These discoveries offer valuable insights into cellular responses to internal stresses, vital for maintaining cellular homeostasis. Additionally, GCN1 exhibits the ability to regulate the cell cycle and suppress inflammation, among other processes, independently of GCN2. Our review outlines the structural characteristics and biological functions of GCN1, shedding light on its significant involvement in the onset and progression of various cancer and non-cancer diseases. Our work underscores the role of GCN1 in the context of drug therapeutic effects, hinting at its potential as a promising drug target. Furthermore, our work delves deep into the functional mechanisms of GCN1, promising innovative avenues for the diagnosis and treatment of diseases in the future. The exploration of GCN1's multifaceted roles not only enhances our understanding of its mechanisms but also paves the way for novel therapeutic interventions. The ongoing quest to unveil additional functions of GCN1 holds the promise of further enriching our comprehension of its mode of action.


Subject(s)
Neoplasms , Protein Serine-Threonine Kinases , Humans , Animals , Protein Serine-Threonine Kinases/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction
3.
PLoS One ; 19(2): e0299138, 2024.
Article in English | MEDLINE | ID: mdl-38408075

ABSTRACT

BACKGROUND: Cuproptosis is a novel copper-dependent mode of cell death that has recently been discovered. The relationship between Cuproptosis-related ncRNAs and breast cancer subtypes, however, remains to be studied. METHODS: The aim of this study was to construct a breast cancer subtype prediction model associated with Cuproptosis. This model could be used to determine the subtype of breast cancer patients. To achieve this aim, 21 Cuproptosis-related genes were obtained from published articles and correlation analysis was performed with ncRNAs differentially expressed in breast cancer. Random forest algorithms were subsequently utilized to select important ncRNAs and build breast cancer subtype prediction models. RESULTS: A total of 94 ncRNAs significantly associated with Cuproptosis were obtained and the top five essential features were chosen to build a predictive model. These five biomarkers were differentially expressed in the five breast cancer subtypes and were closely associated with immune infiltration, RNA modification, and angiogenesis. CONCLUSION: The random forest model constructed based on Cuproptosis-related ncRNAs was able to accurately predict breast cancer subtypes, providing a new direction for the study of clinical therapeutic targets.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Cell Death , Copper , RNA, Untranslated/genetics , Apoptosis
4.
Mol Cancer ; 23(1): 13, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38217023

ABSTRACT

The tumor microenvironment (TME) is an intricate system comprised of tumor cells and the surrounding cellular and non-cellular components, exerting a pivotal influence on the initiation and progression of tumors. Exhibiting dynamic and diverse compositions as well as functional states across various tumors and patients, a profound comprehension of its specific internal interactions is indispensable for formulating efficacious anti-cancer treatment strategies. Extensive interactions among various immune cell types within the TME are well-documented, with their phenotypes and abundances closely linked to clinical prognoses. TME research is progressing towards greater complexity and precision, yet, to date, no representative TME biomarkers suitable for clinical applications have been definitively identified and validated. In a recent study, the collaborative actions of CXCL9 and SPP1 (CXCL9:SPP1) were found to collectively dictate the polarity of tumor-associated macrophages (TAMs) within the TME, exerting profound effects on tumor progression and treatment responses. The mutually exclusive expression of CXCL9:SPP1 in the TME not only governs TAM polarity but also exhibits strong correlations with immune cell profiles, antitumor factors, and patient outcomes, significantly influencing prognosis. This article consolidates the significance and prospects of CXCL9:SPP1 as a novel indicator for tumor development and prognosis, while also proposing future research directions and addressing potential challenges in this promising field.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Humans , Prognosis , Phenotype , Tumor Microenvironment , Chemokine CXCL9 , Osteopontin
SELECTION OF CITATIONS
SEARCH DETAIL
...