Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Cancers (Basel) ; 15(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37627118

ABSTRACT

BACKGROUND: The identification of cancer driver genes and key molecular pathways has been the focus of large-scale cancer genome studies. Network-based methods detect significantly perturbed subnetworks as putative cancer pathways by incorporating genomics data with the topological information of PPI networks. However, commonly used PPI networks have distinct topological structures, making the results of the same method vary widely when applied to different networks. Furthermore, emerging context-specific PPI networks often have incomplete topological structures, which pose serious challenges for existing subnetwork detection algorithms. METHODS: In this paper, we propose a novel method, referred to as MultiFDRnet, to address the above issues. The basic idea is to model a set of PPI networks as a multiplex network to preserve the topological structure of individual networks, while introducing dependencies among them, and, then, to detect significantly perturbed subnetworks on the modeled multiplex network using all the structural information simultaneously. RESULTS: To illustrate the effectiveness of the proposed approach, an extensive benchmark analysis was conducted on both simulated and real cancer data. The experimental results showed that the proposed method is able to detect significantly perturbed subnetworks jointly supported by multiple PPI networks and to identify novel modular structures in context-specific PPI networks.

2.
Nucleic Acids Res ; 51(11): 5791-5809, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37140035

ABSTRACT

Mitochondrial U-indel RNA editing in kinetoplastid protozoa is directed by trans-acting gRNAs and mediated by a holoenzyme with associated factors. Here, we examine the function of the holoenzyme-associated KREH1 RNA helicase in U-indel editing. We show that KREH1 knockout (KO) impairs editing of a small subset of mRNAs. Overexpression of helicase-dead mutants results in expanded impairment of editing across multiple transcripts, suggesting the existence of enzymes that can compensate for KREH1 in KO cells. In depth analysis of editing defects using quantitative RT-PCR and high-throughput sequencing reveals compromised editing initiation and progression in both KREH1-KO and mutant-expressing cells. In addition, these cells exhibit a distinct defect in the earliest stages of editing in which the initiator gRNA is bypassed, and a small number of editing events takes place just outside this region. Wild type KREH1 and a helicase-dead KREH1 mutant interact similarly with RNA and holoenzyme, and overexpression of both similarly disorders holoenzyme homeostasis. Thus, our data support a model in which KREH1 RNA helicase activity facilitates remodeling of initiator gRNA-mRNA duplexes to permit accurate utilization of initiating gRNAs on multiple transcripts.


Subject(s)
Protozoan Proteins , RNA Helicases , Trypanosoma brucei brucei , RNA/genetics , RNA Editing , RNA Helicases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Protozoan/genetics , RNA, Protozoan/metabolism , Trypanosoma/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Protozoan Proteins/metabolism
3.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902377

ABSTRACT

PURPOSE: Bladder cancer (BCa) is one of the most common cancer types worldwide and is characterized by a high rate of recurrence. In previous studies, we and others have described the functional influence of plasminogen activator inhibitor-1 (PAI1) in bladder cancer development. While polymorphisms in PAI1 have been associated with increased risk and worsened prognosis in some cancers, the mutational status of PAI1 in human bladder tumors has not been well defined. METHODS: In this study, we evaluated the mutational status of PAI1 in a series of independent cohorts, comprised of a total of 660 subjects. RESULTS: Sequencing analyses identified two clinically relevant 3' untranslated region (UTR) single nucleotide polymorphisms (SNPs) in PAI1 (rs7242; rs1050813). Somatic SNP rs7242 was present in human BCa cohorts (overall incidence of 72%; 62% in Caucasians and 72% in Asians). In contrast, the overall incidence of germline SNP rs1050813 was 18% (39% in Caucasians and 6% in Asians). Furthermore, Caucasian patients with at least one of the described SNPs had worse recurrence-free survival and overall survival (p = 0.03 and p = 0.03, respectively). In vitro functional studies demonstrated that SNP rs7242 increased the anti-apoptotic effect of PAI1, and SNP rs1050813 was related to a loss of contact inhibition associated with cellular proliferation when compared to wild type. CONCLUSION: Further investigation of the prevalence and potential downstream influence of these SNPs in bladder cancer is warranted.


Subject(s)
Plasminogen Activator Inhibitor 1 , Polymorphism, Single Nucleotide , Urinary Bladder Neoplasms , Humans , Neoplasm Recurrence, Local , Plasminogen Activator Inhibitor 1/genetics , Urinary Bladder Neoplasms/genetics
4.
Radiother Oncol ; 178: 109421, 2023 01.
Article in English | MEDLINE | ID: mdl-36410548

ABSTRACT

PURPOSE: To explore the role of induction chemotherapy (IC) followed by concurrent chemoradiotherapy (CCRT) versus CCRT alone in patients diagnosed with N3 nasopharyngeal carcinoma (NPC). PATIENTS AND METHODS: A total of 787 patients with newly diagnosed N3 NPC treated with IC + CCRT or CCRT alone were included. Progression-free survival (PFS) was the primary endpoint. We balanced variables using propensity score matching (PSM). Kaplan-Meier curves with log-rank tests were applied to evaluate the survival condition of each group. Independent prognostic factors were identified using the Cox regression analysis. RESULTS: PSM assigned 228 patients to IC + CCRT and CCRT alone groups. Survival analysis for the matched data set showed that IC + CCRT achieved better survival outcomes compared with CCRT alone, and significant difference was observed in 5-year PFS [74.8% (95%CI 69.2 âˆ¼ 80.9%) vs 65.4% (95%CI 59.4 âˆ¼ 72.0%), P = 0.008], 5-year OS [(77.4%(95%CI 71.9 âˆ¼ 83.3%) vs66.3%(95%CI 60.3 âˆ¼ 72.9%), P = 0.005)] and 5-year distant metastasis-free survival (DMFS)[(81.8%(95%CI 76.7 âˆ¼ 87.2%) vs72.4%(95%CI 66.7 âˆ¼ 78.7%), P = 0.007)] between the two treatment groups. In multivariate analysis, IC + CCRT remained an independent protective factor for PFS (adjusted HR, 0.603; 95% CI, 0.433-0.841; P = 0.003), OS (adjusted HR, 0.568; 95% CI, 0.406-0.793; P < 0.001), and DMFS (adjusted HR, 0.541; 95% CI, 0.364-0.805; P = 0.002). CONCLUSION: More chemotherapy should be considered in patients with N3 NPC because of its ability to improve survival time. This could be from the use of IC or adjuvant metronomic chemotherapy.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Induction Chemotherapy , Propensity Score , Chemoradiotherapy/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies
5.
RNA ; 28(11): 1496-1508, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36096641

ABSTRACT

Uridine insertion/deletion RNA editing is an extensive post-transcriptional modification of mitochondrial mRNAs in kinetoplastid organisms, including Trypanosoma brucei This process is carried out using trans-acting gRNAs and complex protein machinery. The essential RNA editing substrate binding complex (RESC) serves as the scaffold that modulates protein and RNA interactions during editing, and contains the guide RNA binding complex (GRBC), the RNA editing mediator complexes (REMCs), and organizer proteins. Despite the importance of RESC in editing, the functions of each protein comprising this complex are not completely understood. Here, we further define the roles of a REMC protein, RESC13, and a RESC organizer, RESC14, using high-throughput sequencing on two large pan-edited mRNAs, A6 and COIII. When comparing our analyses to that of a previously published small pan-edited mRNA, RPS12, we find that RESC13 has conserved functions across the three transcripts with regard to editing initiation, gRNA utilization, gRNA exchange, and restricting the formation of long misedited junctions that likely arise from its ability to modulate RNA structure. However, RESC13 does have transcript-specific effects on the types of long junctions whose formation it restricts. RESC14 has a conserved effect on gRNA utilization across the three transcripts analyzed, but has transcript-specific effects on editing initiation, gRNA exchange, and junction formation. Our data suggest that transcript-specific effects of both proteins are due to differences in transcript length and sequences as well as transcript-specific protein interactions. These findings highlight the importance of studying multiple transcripts to determine the function of editing factors.


Subject(s)
RNA Editing , Trypanosoma brucei brucei , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , RNA/metabolism , RNA, Protozoan/genetics , RNA, Protozoan/metabolism
6.
Diagnostics (Basel) ; 12(8)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35892512

ABSTRACT

Bladder cancer is a biologically heterogeneous disease with variable clinical presentations, outcomes and responses to therapy. Thus, the clinical utility of single biomarkers for the detection and prediction of biological behavior of bladder cancer is limited. We have previously identified and validated a bladder cancer diagnostic signature composed of 10 biomarkers, which has been incorporated into a multiplex immunoassay bladder cancer test, Oncuria™. In this study, we evaluate whether these 10 biomarkers can assist in the prediction of bladder cancer clinical outcomes. Tumor gene expression and patient survival data from bladder cancer cases from The Cancer Genome Atlas (TCGA) were analyzed. Alignment between the mRNA expression of 10 biomarkers and the TCGA 2017 subtype classification was assessed. Kaplan-Meier analysis of multiple gene expression datasets indicated that high expression of the combined 10 biomarkers correlated with a significant reduction in overall survival. The analysis of three independent, publicly available gene expression datasets confirmed that multiplex prognostic models outperformed single biomarkers. In total, 8 of the 10 biomarkers from the Oncuria™ test were significantly associated with either luminal or basal molecular subtypes, and thus, the test has the potential to assist in the prediction of clinical outcome.

7.
Sci Rep ; 12(1): 12186, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842542

ABSTRACT

The extracellular activity of Plasminogen activator inhibitor-1 (PAI-1) is well described, acting as an inhibitor of tissue plasminogen activator and urokinase-type plasminogen activator, impacting fibrinolysis. Recent studies have revealed a pro-tumorigenic role of PAI-1 in human cancers, via the regulation of angiogenesis and tumor cell survival. In this study, immunohistochemical staining of 939 human bladder cancer specimens showed that PAI-1 expression levels correlated with tumor grade, tumor stage and overall survival. The typical subcellular localization of PAI-1 is cytoplasmic, but in approximately a quarter of the cases, PAI-1 was observed to be localized to both the tumor cell cytoplasm and the nucleus. To investigate the potential function of nuclear PAI-1 in tumor biology we applied chromatin immunoprecipitation (ChIP)-sequencing, gene expression profiling, and rapid immunoprecipitation mass spectrometry to a pair of bladder cancer cell lines. ChIP-sequencing revealed that PAI-1 can bind DNA at distal intergenic regions, suggesting a role as a transcriptional coregulator. The downregulation of PAI-1 in bladder cancer cell lines caused the upregulation of numerous genes, and the integration of ChIP-sequence and RNA-sequence data identified 57 candidate genes subject to PAI-1 regulation. Taken together, the data suggest that nuclear PAI-1 can influence gene expression programs and support malignancy.


Subject(s)
Plasminogen Activator Inhibitor 1/metabolism , Urinary Bladder Neoplasms , Humans , Neovascularization, Pathologic , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 2 , Tissue Plasminogen Activator , Urinary Bladder Neoplasms/genetics , Urokinase-Type Plasminogen Activator/metabolism
8.
Cancer Biomark ; 33(1): 151-157, 2022.
Article in English | MEDLINE | ID: mdl-34511488

ABSTRACT

BACKGROUND: Intravesical Bacillus Calmette-Guerin (BCG), a live attenuated tuberculosis vaccine that acts as a non-specific immune system stimulant, is the most effective adjuvant treatment for patients with intermediate or high-risk non-muscle-invasive bladder cancer (NMIBC). However, to date, there are no reliable tests that are predictive of BCG treatment response. In this study, we evaluated the performance of OncuriaTM, a bladder cancer detection test, to predict response to intravesical BCG. METHODS: OncuriaTM data was evaluated in voided urine samples obtained from a prospectively collected cohort of 64 subjects with intermediate or high risk NMIBC prior to treatment with intravesical BCG. The OncuriaTM test, which measures 10 cancer-associated biomarkers was performed in an independent clinical laboratory. The ability of the test to identify those patients in whom BCG is ineffective against tumor recurrence was tested. Predictive models were derived using supervised learning and cross-validation analyses. Model performance was assessed using ROC curves. RESULTS: Pre-treatment urinary concentrations of MMP9, VEGFA, CA9, SDC1, PAI1, APOE, A1AT, ANG and MMP10 were increased in patients who developed disease recurrence. A combinatorial predictive model of treatment outcome achieved an AUROC 0.89 [95% CI: 0.80-0.99], outperforming any single biomarker, with a test sensitivity of 81.8% and a specificity of 84.9%. Hazard ratio analysis revealed that patients with higher urinary levels of ANG, CA9 and MMP10 had a significantly higher risk of disease recurrence. CONCLUSIONS: Monitoring the urinary levels of a cancer-associated biomarker panel enabled the discrimination of patients who did not respond to intravesical BCG therapy. With further study, the multiplex OncuriaTM test may be applicable for the clinical evaluation of bladder cancer patients considering intravesical BCG treatment.


Subject(s)
BCG Vaccine , Urinary Bladder Neoplasms , Administration, Intravesical , BCG Vaccine/therapeutic use , Humans , Neoplasm Recurrence, Local/drug therapy , Pilot Projects , Urinalysis , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/drug therapy
9.
Diagnostics (Basel) ; 11(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34204951

ABSTRACT

BACKGROUND: The Oncuria™ urine test for the detection of bladder cancer measures a multiplex protein signature. In this study, we investigated the influence of urinary cellularity, protein, and hematuria on the performance of the Oncuria™ test in an ex vivo experimental model. MATERIALS AND METHODS: Pooled urine from healthy subjects was spiked with cultured benign (UROtsa) or malignant cells (T24), cellular proteins, or whole blood. The resulting samples were analyzed using the Oncuria™ test following the manufacturer's instructions. RESULTS: Urine samples obtained from healthy subjects were negative for bladder cancer by Oncuria™ test criteria. The majority of the manipulated conditions did not result in a false-positive test. The addition of whole blood (high concentration) did result in a false-positive result, but this was abrogated by sample centrifugation prior to analysis. The addition of cellular proteins (high concentration) resulted in a positive Oncuria™ test, and this was unaffected by pre-analysis sample centrifugation. CONCLUSIONS: The Oncuria™ multiplex test performed well in the ex vivo experimental model and shows promise for clinical application. The identification of patients who require additional clinical evaluation could reduce the need to subject patients who do not have bladder cancer to frequent, uncomfortable and expensive cystoscopic examinations, thus benefiting both patients and the healthcare system.

10.
J Transl Med ; 19(1): 141, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33823873

ABSTRACT

BACKGROUND: Due to insufficient accuracy, urine-based assays currently have a limited role in the management of patients with bladder cancer. The identification of multiplex molecular signatures associated with disease has the potential to address this deficiency and to assist with accurate, non-invasive diagnosis and monitoring. METHODS: To evaluate the performance of Oncuria™, a multiplex immunoassay for bladder detection in voided urine samples. The test was evaluated in a multi-institutional cohort of 362 prospectively collected subjects presenting for bladder cancer evaluation. The parallel measurement of 10 biomarkers (A1AT, APOE, ANG, CA9, IL8, MMP9, MMP10, PAI1, SDC1 and VEGFA) was performed in an independent clinical laboratory. The ability of the test to identify patients harboring bladder cancer was assessed. Bladder cancer status was confirmed by cystoscopy and tissue biopsy. The association of biomarkers and demographic factors was evaluated using linear discriminant analysis (LDA) and predictive models were derived using supervised learning and cross-validation analyses. Diagnostic performance was assessed using ROC curves. RESULTS: The combination of the 10 biomarkers provided an AUROC 0.93 [95% CI 0.87-0.98], outperforming any single biomarker. The addition of demographic data (age, sex, and race) into a hybrid signature improved the diagnostic performance AUROC 0.95 [95% CI 0.90-1.00]. The hybrid signature achieved an overall sensitivity of 0.93, specificity of 0.93, PPV of 0.65 and NPV of 0.99 for bladder cancer classification. Sensitivity values of the diagnostic panel for high-grade bladder cancer, low-grade bladder cancer, MIBC and NMIBC were 0.94, 0.89, 0.97 and 0.93, respectively. CONCLUSIONS: Urinary levels of a biomarker panel enabled the accurate discrimination of bladder cancer patients and controls. The multiplex Oncuria™ test can achieve the efficient and accurate detection and monitoring of bladder cancer in a non-invasive patient setting.


Subject(s)
Urinary Bladder Neoplasms , Biomarkers, Tumor , Humans , ROC Curve , Sensitivity and Specificity , Urinalysis , Urinary Bladder Neoplasms/diagnosis
11.
Nat Comput Sci ; 1(1): 79-88, 2021 Jan.
Article in English | MEDLINE | ID: mdl-37346964

ABSTRACT

The identification of key functional biological networks from high-dimensional genomics data is pivotal for cancer research. Here, we introduce FDRnet, a method for the detection of molecular subnetworks in cancer, which addresses several challenges in pathway analysis. FDRnet detects key subnetworks by solving a mixed-integer linear programming problem, using a given upper bound of false discovery rate (FDR) as a budget constraint, and minimizing a conductance score to find dense subgraphs around seed genes. A large-scale benchmark study was performed on both simulation and cancer genomics data. FDRnet outperformed other methods in the ability to detect functionally homogeneous subnetworks in a scale-free biological network, to control FDRs of the genes in detected subnetworks, to improve computational efficiency and to integrate multi-omics data. By overcoming the limitations of existing approaches, FDRnet can facilitate the detection of key functional pathways in cancer and other genetic diseases.

12.
Nucleic Acids Res ; 48(15): 8704-8723, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32738044

ABSTRACT

Trypanosoma brucei is a parasitic protozoan that undergoes a complex life cycle involving insect and mammalian hosts that present dramatically different nutritional environments. Mitochondrial metabolism and gene expression are highly regulated to accommodate these environmental changes, including regulation of mRNAs that require extensive uridine insertion/deletion (U-indel) editing for their maturation. Here, we use high throughput sequencing and a method for promoting life cycle changes in vitro to assess the mechanisms and timing of developmentally regulated edited mRNA expression. We show that edited CYb mRNA is downregulated in mammalian bloodstream forms (BSF) at the level of editing initiation and/or edited mRNA stability. In contrast, edited COIII mRNAs are depleted in BSF by inhibition of editing progression. We identify cell line-specific differences in the mechanisms abrogating COIII mRNA editing, including the possible utilization of terminator gRNAs that preclude the 3' to 5' progression of editing. By examining the developmental timing of altered mitochondrial mRNA levels, we also reveal transcript-specific developmental checkpoints in epimastigote (EMF), metacyclic (MCF), and BSF. These studies represent the first analysis of the mechanisms governing edited mRNA levels during T. brucei development and the first to interrogate U-indel editing in EMF and MCF life cycle stages.


Subject(s)
RNA Stability/genetics , RNA, Messenger/genetics , RNA, Mitochondrial/genetics , RNA, Protozoan/genetics , Trypanosoma brucei brucei/genetics , Mitochondria/genetics , Protozoan Proteins/genetics , RNA Editing/genetics , RNA, Guide, Kinetoplastida/genetics , Trypanosoma brucei brucei/metabolism
13.
J Transl Med ; 18(1): 57, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024545

ABSTRACT

BACKGROUND: Accumulating evidence suggests that plasminogen activator inhibitor-1 (PAI-1) plays an important role in bladder tumorigenesis by regulating cell cycle. However, it remains unclear whether and how inhibition of PAI-1 suppresses bladder tumorigenesis. METHODS: To elucidate the therapeutic effect of PAI-1 inhibition, we tested its tumorigenicity in PAI-1 knockout (KO) mice exposed to a known bladder carcinogen. RESULTS: PAI-1 deficiency did not inhibit carcinogen-induced bladder cancer in mice although carcinogen-exposed wild type mice significantly increased PAI-1 levels in bladder tissue, plasma and urine. We found that PAI-1 KO mice exposed to carcinogen tended to upregulate protein C inhibitor (PAI-3), urokinase-type plasminogen activator (uPA) and tissue-type PA (tPA), and significantly increased PAI-2, suggesting a potential compensatory function of these molecules when PAI-1 is abrogated. Subsequent studies employing gene expression microarray using mouse bladder tissues followed by post hoc bioinformatics analysis and validation experiments by qPCR and IHC demonstrated that SERPING1 is further downregulated in PAI-1 KO mice exposed to BBN, suggesting that SERPING1 as a potential missing factor that regulate PAI-2 overexpression (compensation pathway). CONCLUSIONS: These results indicate that serpin compensation pathway, specifically PAI-2 overexpression in this model, supports bladder cancer development when oncoprotein PAI-1 is deleted. Further investigations into PAI-1 are necessary in order to identify true potential targets for bladder cancer therapy.


Subject(s)
Plasminogen Activator Inhibitor 1 , Plasminogen Activator Inhibitor 2 , Urinary Bladder Neoplasms , Animals , Mice , Mice, Knockout , Nitrosamines , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 2/genetics , Serpin E2 , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/genetics
14.
Cancer Res ; 80(2): 170-174, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31744819

ABSTRACT

The interpretation of accumulating genomic data with respect to tumor evolution and cancer progression requires integrated models. We developed a computational approach that enables the construction of disease progression models using static sample data. Application to breast cancer data revealed a linear, branching evolutionary model with two distinct trajectories for malignant progression. Here, we used the progression model as a foundation to investigate the relationships between matched primary and metastasis breast tumor samples. Mapping paired data onto the model confirmed that molecular breast cancer subtypes can shift during progression and supported directional tumor evolution through luminal subtypes to increasingly malignant states. Cancer progression modeling through the analysis of available static samples represents a promising breakthrough. Further refinement of a roadmap of breast cancer progression will facilitate the development of improved cancer diagnostics, prognostics, and targeted therapeutics. SIGNIFICANCE: Analysis of matched primary and metastatic tumor samples supports a unidirectional, linear cancer evolution process and sheds light on longstanding issues regarding the origins of molecular subtypes and their progression relationships.


Subject(s)
Breast Neoplasms/genetics , Evolution, Molecular , Models, Biological , Adult , Aged , Aged, 80 and over , Breast/pathology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cohort Studies , Computational Biology , Datasets as Topic , Disease Progression , Female , Gene Expression Profiling , Humans , Linear Models , Middle Aged , Prognosis , Survival Analysis
15.
Bioinformatics ; 36(5): 1476-1483, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31603461

ABSTRACT

MOTIVATION: Cancer subtype classification has the potential to significantly improve disease prognosis and develop individualized patient management. Existing methods are limited by their ability to handle extremely high-dimensional data and by the influence of misleading, irrelevant factors, resulting in ambiguous and overlapping subtypes. RESULTS: To address the above issues, we proposed a novel approach to disentangling and eliminating irrelevant factors by leveraging the power of deep learning. Specifically, we designed a deep-learning framework, referred to as DeepType, that performs joint supervised classification, unsupervised clustering and dimensionality reduction to learn cancer-relevant data representation with cluster structure. We applied DeepType to the METABRIC breast cancer dataset and compared its performance to state-of-the-art methods. DeepType significantly outperformed the existing methods, identifying more robust subtypes while using fewer genes. The new approach provides a framework for the derivation of more accurate and robust molecular cancer subtypes by using increasingly complex, multi-source data. AVAILABILITY AND IMPLEMENTATION: An open-source software package for the proposed method is freely available at http://www.acsu.buffalo.edu/~yijunsun/lab/DeepType.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Breast Neoplasms , Deep Learning , Cluster Analysis , Genomics , Humans , Software
16.
RNA ; 25(9): 1177-1191, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31221726

ABSTRACT

Uridine insertion deletion editing in kinetoplastid protozoa requires a complex machinery, a primary component of which is the RNA editing substrate binding complex (RESC). RESC contains two modules termed GRBC (guide RNA binding complex) and REMC (RNA editing mediator complex), although how interactions between these modules and their mRNA and gRNA binding partners are controlled is not well understood. Here, we demonstrate that the ARM/HEAT repeat containing RESC protein, MRB10130, controls REMC association with mRNA- and gRNA-loaded GRBC. High-throughput sequencing analyses show that MRB10130 functions in both initiation and 3' to 5' progression of editing through gRNA-defined domains. Editing intermediates that accumulate upon MRB10130 depletion significantly intersect those in cells depleted of another RESC organizer, MRB7260, but are distinct from those in cells depleted of specific REMC proteins. We present a model in which MRB10130 coordinates numerous protein-protein and protein-RNA interactions during editing progression.


Subject(s)
RNA Editing/genetics , Animals , Cell Line , Protein Interaction Domains and Motifs/genetics , Protozoan Proteins/genetics , RNA Interference/physiology , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/genetics , RNA, Protozoan/genetics , Trypanosoma brucei brucei/genetics , Uridine/genetics
17.
Nucleic Acids Res ; 47(7): 3640-3657, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30698753

ABSTRACT

Most mitochondrial mRNAs in kinetoplastids require extensive uridine insertion/deletion editing to generate translatable open reading frames. Editing is specified by trans-acting gRNAs and involves a complex machinery including basal and accessory factors. Here, we utilize high-throughput sequencing to analyze editing progression in two minimally edited mRNAs that provide a simplified system due their requiring only two gRNAs each for complete editing. We show that CYb and MURF2 mRNAs exhibit barriers to editing progression that differ from those previously identified for pan-edited mRNAs, primarily at initial gRNA usage and gRNA exchange. We demonstrate that mis-edited junctions arise through multiple pathways including mis-alignment of cognate gRNA, incorrect and sometimes promiscuous gRNA utilization and inefficient gRNA anchoring. We then examined the roles of accessory factors RBP16 and MRP1/2 in maintaining edited CYb and MURF2 populations. RBP16 is essential for initiation of CYb and MURF2 editing, as well as MURF2 editing progression. In contrast, MRP1/2 stabilizes both edited mRNA populations, while further promoting progression of MURF2 mRNA editing. We also analyzed the effects of RNA Editing Substrate Binding Complex components, TbRGG2 and GAP1, and show that both proteins modestly impact progression of editing on minimally edited mRNAs, suggesting a novel function for GAP1.


Subject(s)
Protozoan Proteins/genetics , RNA Editing/genetics , RNA, Messenger/genetics , Trypanosoma brucei brucei/genetics , Animals , High-Throughput Nucleotide Sequencing , Kinetoplastida/genetics , RNA Interference , RNA, Guide, Kinetoplastida/genetics , RNA, Mitochondrial/genetics , RNA-Binding Proteins/genetics , Uridine/genetics
18.
RNA ; 24(4): 540-556, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29330168

ABSTRACT

The trypanosome RNA editing substrate binding complex (RESC) acts as the platform for mitochondrial uridine insertion/deletion RNA editing and facilitates the protein-protein and protein-RNA interactions required for the editing process. RESC is broadly comprised of two subcomplexes: GRBC (guide RNA binding complex) and REMC (RNA editing mediator complex). Here, we characterize the function and position in RESC organization of a previously unstudied RESC protein, MRB7260. We show that MRB7260 forms numerous RESC-related complexes, including a novel, small complex with the guide RNA binding protein, GAP1, which is a canonical GRBC component, and REMC components MRB8170 and TbRGG2. RNA immunoprecipitations in MRB7260-depleted cells show that MRB7260 is critical for normal RNA trafficking between REMC and GRBC. Analysis of protein-protein interactions also reveals an important role for MRB7260 in promoting stable association of the two subcomplexes. High-throughput sequencing analysis of RPS12 mRNAs from MRB7260 replete and depleted cells demonstrates that MRB7260 is critical for gRNA exchange and early gRNA utilization, with the exception of the initiating gRNA. Together, these data demonstrate that MRB7260 is essential for productive protein-RNA interactions with RESC during RNA editing.


Subject(s)
Protozoan Proteins/genetics , RNA Editing/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/genetics , Trypanosoma brucei brucei/genetics , Animals , Animals, Genetically Modified , Cell Line , High-Throughput Nucleotide Sequencing , Mitochondria/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA-Binding Proteins/metabolism , Trypanosomiasis, African/parasitology , Uridine/metabolism , ras GTPase-Activating Proteins/metabolism
19.
Carcinogenesis ; 38(12): 1218-1227, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29028945

ABSTRACT

Accumulating evidence suggests that the sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate (S1P) pathway plays a pivotal role in colon carcinogenesis. Our previous studies indicate that the SphK1/S1P pathway mediates colon carcinogenesis at least by regulating cyclooxygenase 2 (COX-2) expression and prostaglandin E2 (PGE2) production. However, the mechanisms by which this pathway regulates colon carcinogenesis are still unclear. First, we show that SphK1 deficient mice significantly attenuated azoxymethane (AOM)-induced colon carcinogenesis as measured by colon tumor incidence, multiplicity, and volume. We found that AOM activates peritoneal macrophages to induce SphK1, COX-2, and tumor necrosis factor (TNF)-α expression in WT mice. Interestingly, SphK1 knockout (KO) mice revealed significant reduction of COX-2 and TNF-α expression from AOM-activated peritoneal macrophages, suggesting that SphK1 regulates COX-2 and TNF-α expression in peritoneal macrophages. We found that inoculation of WT peritoneal macrophages restored the carcinogenic effect of AOM in Sphk1 KO mice as measured by aberrant crypt foci (ACF) formation, preneoplastic lesions of colon cancer. In addition, downregulation of SphK1 only in peritoneal macrophage by short hairpin RNA (shRNA) reduced the number of ACF per colon induced by AOM. Intraperitoneal injection of sphingolipids demonstrates that S1P enhanced AOM-induced ACF formation, while ceramide inhibited. Finally, we show that SphK inhibitor SKI-II significantly reduced the number of ACF per colon. These results suggest that SphK1 expression plays a pivotal role in the early stages of colon carcinogenesis through regulating COX-2 and TNF-α expression from activated peritoneal macrophages.


Subject(s)
Carcinogenesis/metabolism , Colonic Neoplasms/pathology , Macrophages, Peritoneal/enzymology , Phosphotransferases (Alcohol Group Acceptor)/biosynthesis , Animals , Colonic Neoplasms/enzymology , Mice , Mice, Inbred C57BL , Mice, Knockout
20.
Nucleic Acids Res ; 45(13): 7965-7983, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28535252

ABSTRACT

Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations of conventional methods to interrogate the order and mechanism by which editing progresses and thus roles of individual proteins. Here, we examined whole populations of partially edited sequences using high throughput sequencing and a novel bioinformatic platform, the Trypanosome RNA Editing Alignment Tool (TREAT), to elucidate the roles of three proteins in the RNA Editing Mediator Complex (REMC). We determined that the factors examined function in the progression of editing through a gRNA; however, they have distinct roles and REMC is likely heterogeneous in composition. We provide the first evidence that editing can proceed through numerous paths within a single gRNA and that non-linear modifications are essential, generating commonly observed junction regions. Our data support a model in which RNA editing is executed via multiple paths that necessitate successive re-modification of junction regions facilitated, in part, by the REMC variant containing TbRGG2 and MRB8180.


Subject(s)
Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA Editing/genetics , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Protozoan/genetics , RNA, Protozoan/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Base Sequence , Cell Line , Models, Biological , RNA Interference , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...