Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 170: 401-414, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37625679

ABSTRACT

The first approved RNAi therapeutics, ONPATTRO, in 2017 moves the concept of RNA interference (RNAi) therapy from research to clinical reality, raising the hopes for the treatment of currently incurable diseases. However, RNAi therapeutics are still facing two main challenges-susceptibility to enzymatic degradation and low ability to escape from endo/lysosome into the cytoplasm. Therefore, we developed disulfide-based nanospheres (DBNPs) as universal vehicles to achieve efficient RNA delivery to address these problems. Notably, the DBNPs possess unique and desirable features, including improved resistance to nuclease degradation, direct cytoplasmic delivery through thiol-mediated cellular uptake, and cytosolic environment-responsive release, greatly enhancing the bioavailability of RNA therapeutics. Additionally, DBNPs are superior in terms of overcoming formidable physiological barriers, including vascular barriers and impermeable tumor tissues. Owning to these advantages, the DBNPs exhibit efficient gene silencing effect when delivering either small interfering RNA (siRNA) or microRNA in various cell lines and generate remarkable growth inhibition in the zebrafish and mouse model of pancreatic tumors as compared to traditional delivery vectors, such as PEI. Therefore, DBNPs have potential application prospect in RNAi therapy both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: RNA interference (RNAi) therapeutics could target and alter any disease-related mRNA translation, thus have great potential in clinical application. Delivery efficiency of RNA modalities into cell cytoplasm is the main problem that currently limit RNAi therapeutics to release their full potential. Most of the known delivery materials suffer from the endo/lysosomal entrapment and enzymatic degradation during endocytosis-dependent uptake, resulting unsatisfied efficiency of the cytoplasmic release. Here, we developed disulfide-based nanospheres could directly transfer RNA modalities into the cytoplasm and significantly enhance the delivery efficiency, thus holding great potential in RNAi therapy.


Subject(s)
RNAi Therapeutics , Zebrafish , Animals , Mice , RNA Interference , RNAi Therapeutics/methods , RNA, Small Interfering/genetics , Genetic Therapy , Lysosomes , Disulfides
SELECTION OF CITATIONS
SEARCH DETAIL
...