Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1377782, 2024.
Article in English | MEDLINE | ID: mdl-38873161

ABSTRACT

Fragaria nilgerrensis is a wild strawberry species widely distributed in southwest China and has strong ecological adaptability. Akihime (F. × ananassa Duch. cv. Akihime) is one of the main cultivated strawberry varieties in China and is prone to infection with a variety of diseases. In this study, high-throughput sequencing was used to analyze and compare the soil and root microbiomes of F. nilgerrensis and Akihime. Results indicate that the wild species F. nilgerrensis showed higher microbial diversity in nonrhizosphere soil and rhizosphere soil and possessed a more complex microbial network structure compared with the cultivated variety Akihime. Genera such as Bradyrhizobium and Anaeromyxobacter, which are associated with nitrogen fixation and ammonification, and Conexibacter, which is associated with ecological toxicity resistance, exhibited higher relative abundances in the rhizosphere and nonrhizosphere soil samples of F. nilgerrensis compared with those of Akihime. Meanwhile, the ammonia-oxidizing archaea Candidatus Nitrososphaera and Candidatus Nitrocosmicus showed the opposite tendencies. We also found that the relative abundances of potential pathogenic genera and biocontrol bacteria in the Akihime samples were higher than those in the F. nilgerrensis samples. The relative abundances of Blastococcus, Nocardioides, Solirubrobacter, and Gemmatimonas, which are related to pesticide degradation, and genus Variovorax, which is associated with root growth regulation, were also significantly higher in the Akihime samples than in the F. nilgerrensis samples. Moreover, the root endophytic microbiomes of both strawberry species, especially the wild F. nilgerrensis, were mainly composed of potential biocontrol and beneficial bacteria, making them important sources for the isolation of these bacteria. This study is the first to compare the differences in nonrhizosphere and rhizosphere soils and root endogenous microorganisms between wild and cultivated strawberries. The findings have great value for the research of microbiomes, disease control, and germplasm innovation of strawberry.

2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542311

ABSTRACT

Blast-induced neurotrauma (BINT) is a pressing concern for veterans and civilians exposed to explosive devices. Affected personnel may have increased risk for long-term cognitive decline and developing tauopathies including Alzheimer's disease-related disorders (ADRD) or frontal-temporal dementia (FTD). The goal of this study was to identify the effect of BINT on molecular networks and their modulation by mutant tau in transgenic (Tg) mice overexpressing the human tau P301L mutation (rTg4510) linked to FTD or non-carriers. The primary focus was on the phosphoproteome because of the prominent role of hyperphosphorylation in neurological disorders. Discrimination learning was assessed following injury in the subsequent 6 weeks, using the automated home-cage monitoring CognitionWall platform. At 40 days post injury, label-free phosphoproteomics was used to evaluate molecular networks in the frontal cortex of mice. Utilizing a weighted peptide co-expression network analysis (WpCNA) approach, we identified phosphopeptide networks tied to associative learning and mossy-fiber pathways and those which predicted learning outcomes. Phosphorylation levels in these networks were inversely related to learning and linked to synaptic dysfunction, cognitive decline, and dementia including Atp6v1a and Itsn1. Low-intensity blast (LIB) selectively increased pSer262tau in rTg4510, a site implicated in initiating tauopathy. Additionally, individual and group level analyses identified the Arhgap33 phosphopeptide as an indicator of BINT-induced cognitive impairment predominantly in rTg4510 mice. This study unveils novel interactions between ADRD genetic susceptibility, BINT, and cognitive decline, thus identifying dysregulated pathways as targets in potential precision-medicine focused therapeutics to alleviate the disease burden among those affected by BINT.


Subject(s)
Frontotemporal Dementia , Tauopathies , Mice , Humans , Animals , tau Proteins/genetics , tau Proteins/metabolism , Frontotemporal Dementia/genetics , Phosphopeptides , Tauopathies/metabolism , Mice, Transgenic , Cognition , Disease Models, Animal
3.
Acta Neuropathol Commun ; 11(1): 144, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37674234

ABSTRACT

Mild traumatic brain injury (mTBI) induced by low-intensity blast (LIB) is a serious health problem affecting military service members and veterans. Our previous reports using a single open-field LIB mouse model showed the absence of gross microscopic damage or necrosis in the brain, while transmission electron microscopy (TEM) identified ultrastructural abnormalities of myelin sheaths, mitochondria, and synapses. The neurovascular unit (NVU), an anatomical and functional system with multiple components, is vital for the regulation of cerebral blood flow and cellular interactions. In this study, we delineated ultrastructural abnormalities affecting the NVU in mice with LIB exposure quantitatively and qualitatively. Luminal constrictive irregularities were identified at 7 days post-injury (DPI) followed by dilation at 30 DPI along with degeneration of pericytes. Quantitative proteomic analysis identified significantly altered vasomotor-related proteins at 24 h post-injury. Endothelial cell, basement membrane and astrocyte end-foot swellings, as well as vacuole formations, occurred in LIB-exposed mice, indicating cellular edema. Structural abnormalities of tight junctions and astrocyte end-foot detachment from basement membranes were also noted. These ultrastructural findings demonstrate that LIB induces multiple-component NVU damage. Prevention of NVU damage may aid in identifying therapeutic targets to mitigate the effects of primary brain blast injury.


Subject(s)
Blast Injuries , Brain Concussion , Brain Injuries , Animals , Mice , Proteomics , Arvicolinae , Basement Membrane
4.
J Histochem Cytochem ; 71(9): 481-493, 2023 09.
Article in English | MEDLINE | ID: mdl-37599425

ABSTRACT

Gelatin zymography is widely used to detect gelatinase activity, which is performed on unfixed tissue because it is assumed that fixation inactivates enzymes. However, using fixed tissues has several advantages over using fresh tissues for such prevention of tissue decay, thereby preserving the proteins as well as the morphology and structure of the specimens. In this study, we investigated the effects of the four commonly used fixatives (ethanol, acetone, zinc-based fixative (ZBF), and paraformaldehyde (PFA)) on the gelatinolytic activity in mouse brain tissue. Multiple protocols were employed to extract proteins from the fixed brain tissue. Western blotting and in-gel zymography (IGZ) were used to detect the gelatinase proteins and gelatinolytic activity of the extractions, respectively. In situ zymography (ISZ) revealed that ethanol, acetone, ZBF, and short-time PFA fixation did not inhibit gelatinolytic activity. Neither 1% Triton + 1 M NaCl nor 10% DMSO + 1 M NaCl was effective in extracting proteins from ethanol-, acetone-, ZBF-, or PFA-fixed brain tissues. However, 8 M urea + 4% CHAPS effectively extracted gelatinase proteins from ethanol- and acetone-fixed tissues while retaining the gelatinolytic activity. 2% SDS effectively extracted gelatinase proteins from ethanol-, acetone-, and ZBF-fixed tissues while retaining the gelatinolytic activity. Although 2% SDS + heating extracted gelatinase proteins from ethanol-, acetone-, ZBF-, and even long-term PFA-fixed tissues, the gelatinolytic activity was not retained. Our findings suggest that both ISZ and IGZ can be performed on fixed brain tissue, which is anticipated to be an improvement over the conventionally used gelatin zymography methods. (J Histochem Cytochem 71: 481-493, 2023).


Subject(s)
Acetone , Gelatin , Animals , Mice , Sodium Chloride , Brain , Ethanol , Fixatives
5.
Plant Dis ; 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36256743

ABSTRACT

Strawberry (Fragaria × ananassa Duch.), a widely grown octoploid species, is one of the most important economic fruit crops and has been widely cultivated in the world, including China. In December 2021, a serious crown rot disease (approximately 50% incidence) was observed in strawberry (cultivar Miaoxiang) plantations in Qujing City, Yunnan Province, China. Symptoms observed on aboveground part withered rapidly, reddish-brown marbled necrosis on crown. The roots were healthy and strong, but the plants finally died. To isolate the causal agent of this disease, crown tissues from five strawberry plants showing typical symptoms were cut into pieces of 5×5 mm, and the pieces were surface-sterilized with 75% ethanol for 45 s followed by 2.5% NaClO for 3 min and rinsed thrice with sterile water, and then placed onto potato dextrose agar (PDA) for 7 days at 25 ºC. After 3 to 4 days, extended single hyphal tips from the tissues were transferred to PDA and incubated for 7 days at 25 ºC. The colonies were initially white, later became somewhat zonate, velvety, cyan gray on the upper side and cyan ink pigment ring on the reverse side of plates, with concentric rings of salmon sporodochia. Many yellowish or orange creamy conidial droplets formed on PDA after 14 days at 25 ºC. Fifty-nine isolates were obtained, and three isolates QLYRR1, QLMCR9, and QLMCR39 were selected for further experiments. Conidia were hyaline, cylindrical with rounded ends, 12.17-19.35×3.71-6.30 µm (average±SD, 15.24±1.37×5.09±0.45 µm, n=150), L/W ratio = 2.99. The three isolates were molecularly identified using the genomic regions of internal transcribed spacer (ITS), actin (ACT), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and beta-tubulin (TUB2) genes, and the sequences were deposited in GenBank (accession nos. QLYRR1, QLMCR9, QLMCR39: ON668272, ON668256, ON668257[ITS], ON684302, ON684300, ON684301[ACT], ON684316, ON684314, ON684315[CHS-1], ON684292, ON684290, ON684291[GAPDH], ON684286, ON684284, ON684285[TUB2]). The phylogenetic analysis of experimental strains was performed by Maximum-likelihood (ML) tree and Bayesian inference (BI) method. Nucleotide sequences exhibited three isolates were clustered with the ex-type strain C. pandanicola strain MFLUCC 170571T found in Thailand, C. pandanicola strains (SAUCC201152, SAUCC200204) found in Shandong Province, and the holotype stain C. parvisporum YMF 1.06942T found in Guangxi Province, China. Morphologically, isolates were easily distinguished from C. parvisporum by the colony on PDA and the size of conidia (Yu et al. 2022). Morphological characteristics and phylogenetic analyses revealed that QLYRR1, QLMCR9, and QLMCR39 belong to C. pandanicola, the members of the C. gloeosporioides species complex (Tibpromma et al. 2018; Mu et al. 2021). Koch's postulates were tested by strawberry plants (two cultivars, Akihime and Miaoxiang) in vivo, strawberry plants were tested for the three isolates by spraying 1×106 conidia/mL suspension on three seedlings. Three seedlings sprayed with sterile distilled water were served as control. All of the plants were transferred to a glasshouse with a 28/20 °C day/night temperature range and natural sunlight. After 6 weeks, QLYRR1-, QLMCR9-, and QLMCR39-sprayed seedlings were stunted and developed typical wilt symptoms similar to those observed in the field with the incidence for 3, 3, and 3 seedlings, respectively. The negative control remained asymptomatic. The fungi were reisolated again from lesions of diseased plants and leaves with 100% frequency, and morphological characteristics and tested gene sequences were identical to the original isolates in this note, thus fulfilling Koch's postulates. C. pandanicola was described from the healthy leaves of Pandanus sp. and the lesion fruits of Juglans regia. To our knowledge, this is the first report confirming C. pandanicola causes anthracnose crown rot on strawberries in China. C. pandanicola has the potential for causing serious losses to the strawberry industry, and research is needed on management strategies to minimize losses.

6.
Front Microbiol ; 13: 881450, 2022.
Article in English | MEDLINE | ID: mdl-35651487

ABSTRACT

Anthracnose caused by Colletotrichum spp. was widespread in recent years and resulted in great damage to strawberry production. Soil microbial communities were key contributors to host nutrition, development, and immunity; however, the difference between the microbial communities of healthy and anthracnose-infected strawberry rhizosphere soils remains unclear. In this study, the Illumina sequencing technique was used to comparatively study the prokaryotic and fungal community compositions and structures between healthy and anthracnose-infected strawberry rhizosphere soils in Yuxi, Yunnan Province. Both microbial community diversities and richness of anthracnose-infected strawberry rhizosphere soils were higher than those of healthy strawberry rhizosphere soils. A total of 2,518 prokaryotic and 556 fungal operational taxonomic units (OTUs) were obtained at the 97% similarity threshold. Proteobacteria, Thaumarchaeota, and Acidobacteria were the dominant prokaryotic phyla; Ascomycota, unclassified_k__Fungi, and Mortierellomycota were the dominant fungal phyla. The relative abundances of beneficial bacterial phyla Actinobacteria and Firmicutes, genera Streptomyces, Azospirillum, and Bacillus were significantly reduced in anthracnose-infected strawberry rhizosphere soils; the relative abundance of beneficial fungal species Trichoderma asperellum shows a similar tendency with bacterial abundance. Besides Colletotrichum, 15 other potential fungal pathogen genera and seven fungal pathogen species were identified; among the potential pathogen genera and species, eight pathogen genera and Fusarium oxysporum showed significant differences between healthy and anthracnose-infected strawberry rhizosphere soils. The results suggested that strawberry planted in this area may be infected by other fungal pathogens except for Colletotrichum spp. Our present research will provide theoretical basis and data reference for the isolation and identification of strawberry pathogens and potential probiotics in future works.

7.
Neurotrauma Rep ; 3(1): 27-38, 2022.
Article in English | MEDLINE | ID: mdl-35141713

ABSTRACT

Mild traumatic brain injury induced by low-intensity blast (LIB) exposure poses concerns in military personnel. Using an open-field, non-inertial blast model and assessments by conventional behavioral tests, our previous studies revealed early-phase anxiety-like behaviors in LIB-exposed mice. However, the impact of LIB upon long-term anxiety-like behaviors requires clarification. This study applied a highly sensitive automated home-cage monitoring (HCM) system, which minimized human intervention and environmental changes, to assess anxiety-like responses in mice 3 months after LIB exposure. Initial assessment of 72-h spontaneous activities in a natural cage condition over multiple light and dark phases showed altered sheltering behaviors. LIB-exposed mice exhibited a subtle, but significantly decreased, duration of short shelter visits as compared to sham controls. Other measured responses between LIB-exposed mice and sham controls were insignificant. When behavioral assessments were performed in a challenged condition using an aversive spotlight, LIB-exposed mice demonstrated a significantly higher frequency of movements of shorter distance and duration per movement. Taken together, these findings demonstrated the presence of chronic anxiety-like behaviors assessed by the HCM system under both natural and challenged conditions in mice occurring post-LIB exposure. This model thus provides a platform to test for screening and interventions on anxiety disorders occurring after LIB non-inertial brain injury.

8.
Neurobiol Dis ; 165: 105634, 2022 04.
Article in English | MEDLINE | ID: mdl-35077822

ABSTRACT

Neurocognitive consequences of blast-induced traumatic brain injury (bTBI) pose significant concerns for military service members and veterans with the majority of "invisible injury." However, the underlying mechanism of such mild bTBI by low-intensity blast (LIB) exposure for long-term cognitive and mental deficits remains elusive. Our previous studies have shown that mice exposed to LIB result in nanoscale ultrastructural abnormalities in the absence of gross or apparent cellular damage in the brain. Here we tested the hypothesis that glutamatergic hyperexcitability may contribute to long-term learning deficits. Using brain slice electrophysiological recordings, we found an increase in averaged frequencies with a burst pattern of miniature excitatory postsynaptic currents (mEPSCs) in hippocampal CA3 neurons in LIB-exposed mice at 1- and 7-days post injury, which was blocked by a specific NMDA receptor antagonist AP5. In addition, cognitive function assessed at 3-months post LIB exposure by automated home-cage monitoring showed deficits in dynamic patterns of discrimination learning and cognitive flexibility in LIB-exposed mice. Collected hippocampal tissue was further processed for quantitative global-proteomic analysis. Advanced data-independent acquisition for quantitative tandem mass spectrometry analysis identified altered expression of proteins involved in synaptic plasticity and serine protease inhibitors in LIB-exposed mice. Some were correlated with the ability of discrimination learning and cognitive flexibility. These findings show that acute glutamatergic hyperexcitability in the hippocampus induced by LIB may contribute to long-term cognitive dysfunction and protein alterations. Studies using this military-relevant mouse model of mild bTBI provide valuable insights into developing a potential therapeutic strategy to ameliorate hyperexcitability-modulated LIB injuries.


Subject(s)
Blast Injuries , Proteomics , Animals , Blast Injuries/complications , Blast Injuries/metabolism , Hippocampus/metabolism , Mice , Neuronal Plasticity , Serine Proteinase Inhibitors/metabolism
9.
Cardiovasc Res ; 118(2): 585-596, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33512443

ABSTRACT

AIMS: Elevated sympathetic outflow is associated with primary hypertension. However, the mechanisms involved in heightened sympathetic outflow in hypertension are unclear. The central amygdala (CeA) regulates autonomic components of emotions through projections to the brainstem. The neuronal Kv7 channel is a non-inactivating voltage-dependent K+ channel encoded by KCNQ2/3 genes involved in stabilizing the neuronal membrane potential and regulating neuronal excitability. In this study, we investigated if altered Kv7 channel activity in the CeA contributes to heightened sympathetic outflow in hypertension. METHODS AND RESULTS: The mRNA and protein expression levels of Kv7.2/Kv7.3 in the CeA were significantly reduced in spontaneously hypertensive rats (SHRs) compared with Wistar-Kyoto (WKY) rats. Lowering blood pressure with coeliac ganglionectomy in SHRs did not alter Kv7.2 and Kv7.3 channel expression levels in the CeA. Fluospheres were injected into the rostral ventrolateral medulla (RVLM) to retrogradely label CeA neurons projecting to the RVLM (CeA-RVLM neurons). Kv7 channel currents recorded from CeA-RVLM neurons in brain slices were much smaller in SHRs than in WKY rats. Furthermore, the basal firing activity of CeA-RVLM neurons was significantly greater in SHRs than in WKY rats. Bath application of specific Kv7 channel blocker 10, 10-bis (4-pyridinylmethyl)-9(10H)-anthracnose (XE-991) increased the excitability of CeA-RVLM neurons in WKY rats, but not in SHRs. Microinjection of XE-991 into the CeA increased arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA), while microinjection of Kv7 channel opener QO-58 decreased ABP and RSNA, in anaesthetized WKY rats but not SHRs. CONCLUSIONS: Our findings suggest that diminished Kv7 channel activity in the CeA contributes to elevated sympathetic outflow in primary hypertension. This novel information provides new mechanistic insight into the pathogenesis of neurogenic hypertension.


Subject(s)
Arterial Pressure , Central Amygdaloid Nucleus/metabolism , Hypertension/metabolism , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism , Medulla Oblongata/metabolism , Potassium/metabolism , Sympathetic Nervous System/physiopathology , Animals , Central Amygdaloid Nucleus/physiopathology , Disease Models, Animal , Hypertension/genetics , Hypertension/physiopathology , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Medulla Oblongata/physiopathology , Membrane Potentials , Mice, Inbred C57BL , Mice, Transgenic , Neuroanatomical Tract-Tracing Techniques , Neurons/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction , Vesicular Glutamate Transport Protein 2/genetics , Red Fluorescent Protein
10.
Front Neurol ; 12: 818169, 2021.
Article in English | MEDLINE | ID: mdl-35095749

ABSTRACT

Most traumatic brain injuries (TBIs) during military deployment or training are clinically "mild" and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid ß peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation.

11.
Curr Microbiol ; 77(8): 1724-1736, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32314037

ABSTRACT

The aim of this study was to compare the microbial community structure and diversity in powdery mildew-infected and noninfected strawberry plant rhizosphere soils in the greenhouse based on variations in the 16S rRNA gene V3-V4 and fungal ITS2 regions by Illumina amplicon sequencing. Powdery mildew infection reduced the number of operational taxonomic units (OTUs) and prokaryotic and fungal community richness/diversity indexes in the rhizosphere soils compared with those in healthy plant soils. Furthermore, 3543 prokaryotic and 581 fungal OTUs were obtained at the 97% similarity level. Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi were the dominant bacterial phyla; Woesearchaeota_DHVEG-6, Bathyarchaeota, and Thaumarchaeota were the dominant archaea; and Ascomycota, Basidiomycota, unclassified_fungi, and Zygomycota were the dominant fungal phyla. Their proportions differed significantly among samples. Wolbachia, Devosia, Pseudolabrys, Streptomyces, and Rhizomicrobium were the most abundant bacterial genera; their proportions differed significantly among samples. Most Pseudomonas, Streptomyces, and 'norank' group members might be potential antagonistic microorganisms of powdery mildew pathogens, and Wolbachia and Rickettsia might be pathogen-transmitting vectors. Microascus, Clitopilus, and Ciliophora were the dominant fungi, and their community structures and abundances significantly differed among samples. Microascus, Talaromyces, Zopfiella, and Cryptococcus were relatively more abundant in the powdery mildew-infected strawberry plant rhizosphere soils. Fusarium, Trichoderma, Clitopilus, and 'unclassified' group members may be potential antagonistic populations. The results suggested that powdery mildew-infected strawberry fruits and plants cannot be consumed. This report is the first study to illustrate differences in the rhizosphere soil prokaryotic and fungal communities between powdery mildew-infected and noninfected strawberry plants in a greenhouse.


Subject(s)
Fragaria/microbiology , Microbiota , Plant Diseases/microbiology , Rhizosphere , Soil Microbiology , Archaea/classification , Bacteria/classification , Biodiversity , High-Throughput Nucleotide Sequencing , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics
12.
Can J Microbiol ; 66(5): 359-367, 2020 May.
Article in English | MEDLINE | ID: mdl-32053399

ABSTRACT

The magnitude of the impact of altitude gradient on microbial community and diversity has been studied in recent decades. Whereas bacteria have been the focus of most studies, fungi have been given relatively less attention. As a vital part of the macro- and microscopic ecosystem, rhizosphere fungi play a key role in organic matter decomposition and relative abundance of plant species and have an impact on plant growth and development. Using Duchesnea indica as the host plant, we examined the rhizosphere soil fungal community patterns across the altitude gradient in 15 sites of Yunnan province by sequencing the fungal ITS2 region with the Illumina MiSeq platform. We determined the fungal community composition and structure. We found that, surprisingly, rhizosphere soil fungal diversity of D. indica increased with altitudinal gradient. There was a slight difference in diversity between samples from high- and medium-altitude sites, with medium-altitude sites having the greater diversity. Furthermore, the rhizosphere soil fungal community composition and structure kept changing along the altitudinal gradient. Taxonomic results showed that the extent of phylum diversity was greatest at high-altitude sites, with Ascomycota, Basidiomycota, Zygomycota, and Glomeromycota as the most dominant fungal phyla.


Subject(s)
Altitude , Fungi/isolation & purification , Plant Roots/microbiology , Rosaceae/microbiology , Soil Microbiology , Biodiversity , China , Ecosystem , Mycobiome , Rhizosphere , Soil/chemistry , Temperature
13.
Transl Stroke Res ; 10(5): 546-556, 2019 10.
Article in English | MEDLINE | ID: mdl-30465328

ABSTRACT

Ischemic stroke is a devastating neurological disease that can cause permanent brain damage, but to date, few biomarkers are available to reliably assess the severity of injury during acute onset. In this study, quantitative proteomic analysis of ischemic mouse brain detected the increase in expression levels of clusterin (CLU) and cystatin C (CST3). Since CLU is a secretary protein, serum samples (n = 70) were obtained from acute ischemic stroke (AIS) patients within 24 h of stroke onset and together with 70 matched health controls. Analysis of CLU levels indicated significantly higher levels in AIS patients than healthy controls (14.91 ± 4.03 vs. 12.79 ± 2.22 ng/L; P = 0.0004). Analysis of serum CST3 also showed significant increase in AIS patients as compared with healthy controls (0.90 ± 0.19 vs. 0.84 ± 0.12 ng/L; P = 0.0064). The serum values of CLU were also positively correlated with the NIH Stroke Scale (NIHSS) scores, the time interval after stroke onset, as well as major stroke risk factors associated with lipid profile. These data demonstrate that elevated levels of serum CLU and CST3 are independently associated with AIS and may serve as peripheral biomarkers to aid clinical assessment of AIS and its severity. This pilot study thus contributes to progress toward preclinical proteomic screening by using animal models and allows translation of results from bench to bedside.


Subject(s)
Brain Ischemia/blood , Clusterin/blood , Stroke/blood , Aged , Animals , Biomarkers/blood , Brain Ischemia/complications , Cystatin C/blood , Female , Humans , Male , Middle Aged , Pilot Projects , Proteome/metabolism , Stroke/complications
14.
eNeuro ; 5(3)2018.
Article in English | MEDLINE | ID: mdl-29963617

ABSTRACT

Acute ischemic stroke (AIS) is caused by clotting in the cerebral arteries, leading to brain oxygen deprivation and cerebral infarction. Recombinant human tissue plasminogen activator (tPA) is currently the only Food and Drug Administration-approved drug for ischemic stroke. However, tPA has to be administered within 4.5 h from the disease onset and delayed treatment of tPA can increase the risk of neurovascular impairment, including neuronal cell death, blood-brain barrier (BBB) disruption, and hemorrhagic transformation. A key contributing factor for tPA-induced neurovascular impairment is activation of matrix metalloproteinase-9 (MMP-9). We used a clinically-relevant mouse embolic model of focal-cerebral ischemia by insertion of a single embolus of blood clot to block the right middle cerebral artery. We showed that administration of the potent and highly selective gelatinase inhibitor SB-3CT extends the time window for administration of tPA, attenuating infarct volume, mitigating BBB disruption, and antagonizing the increase in cerebral hemorrhage induced by tPA treatment. We demonstrated that SB-3CT attenuates tPA-induced expression of vascular MMP-9, prevents gelatinase-mediated cleavage of extracellular laminin, rescues endothelial cells, and reduces caveolae-mediated transcytosis of endothelial cells. These results suggest that abrogation of MMP-9 activity mitigates the detrimental effects of tPA treatment, thus the combination treatment holds great promise for extending the therapeutic window for tPA thrombolysis, which opens the opportunity for clinical recourse to a greater number of patients.


Subject(s)
Brain Ischemia/enzymology , Gelatinases/metabolism , Tissue Plasminogen Activator/administration & dosage , Animals , Blood-Brain Barrier/metabolism , Brain Ischemia/prevention & control , Caveolin 1/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gelatinases/antagonists & inhibitors , Heterocyclic Compounds, 1-Ring/administration & dosage , Laminin/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/administration & dosage , Mice, Inbred C57BL , Sulfones/administration & dosage
15.
Methods Mol Biol ; 1626: 147-155, 2017.
Article in English | MEDLINE | ID: mdl-28608207

ABSTRACT

Pathological activation of gelatinases (matrix metalloproteinase-2 and -9; MMP-2/-9) has been shown to cause a number of detrimental outcomes in neurodegenerative diseases. In gel gelatin zymography is a highly sensitive methodology commonly used in revealing levels of gelatinase activity and in separating the proform and active form of gelatinases, based on their different molecular weights. However, this methodology is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity can be regulated at transcriptional and/or post-translational levels under in vivo conditions resulting in alternation of their isoelectric focusing (IEF) points. In this chapter, we describe an advanced methodology, termed two-dimensional zymography, combining IEF with zymographic electrophoresis under non-reducing conditions to achieve significant improvement in separation of the gelatinase isoforms in both cell-based and in vivo models for acute brain injuries and neuroinflammation.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Enzyme Assays/methods , Gelatin/metabolism , Gelatinases/metabolism , Isoelectric Focusing/methods , Neurodegenerative Diseases/enzymology , Animals , Brain/enzymology , Brain/metabolism , Disease Models, Animal , Enzyme Activation , Gelatinases/analysis , Gelatinases/isolation & purification , Mice , Neurodegenerative Diseases/metabolism , Protein Isoforms/analysis , Protein Isoforms/metabolism , Rats
16.
J Cereb Blood Flow Metab ; 37(1): 188-200, 2017 01.
Article in English | MEDLINE | ID: mdl-26681768

ABSTRACT

Matrix metalloproteinases (MMPs), particularly gelatinases (MMP-2/-9), are involved in neurovascular impairment after stroke. Detection of gelatinase activity in vivo can provide insight into blood-brain barrier disruption, hemorrhage, and nerve cell injury or death. We applied gelatinase-activatable cell-penetrating peptides (ACPP) with a cleavable l-amino acid linker to examine gelatinase activity in primary neurons in culture and ischemic mouse brain in vivo We found uptake of Cy5-conjugated ACPP (ACPP-Cy5) due to gelatinase activation both in cultured neurons exposed to n-methyl-d-aspartate and in mice after cerebral ischemia. Fluorescence intensity was significantly reduced when cells or mice were treated with MMP inhibitors or when a cleavage-resistant ACPP-Cy5 was substituted. We also applied an ACPP dendrimer (ACPPD) conjugated with multiple Cy5 and/or gadolinium moieties for fluorescence and magnetic resonance imaging (MRI) in intact animals. Fluorescence analysis showed that ACPPD was detected in sub-femtomole range in ischemic tissues. Moreover, MRI and inductively coupled plasma mass spectrometry revealed that ACPPD produced quantitative measures of gelatinase activity in the ischemic region. The resulting spatial pattern of gelatinase activity and neurodegeneration were very similar. We conclude that ACPPs are capable of tracing spatiotemporal gelatinase activity in vivo, and will therefore be useful in elucidating mechanisms of gelatinase-mediated neurodegeneration after stroke.


Subject(s)
Cell-Penetrating Peptides/chemistry , Gelatinases/analysis , Stroke/diagnostic imaging , Animals , Brain Ischemia/diagnostic imaging , Carbocyanines/chemistry , Cells, Cultured , Gelatinases/metabolism , Magnetic Resonance Imaging/methods , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Molecular Probes/chemistry , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/etiology , Stroke/complications , Stroke/pathology
17.
PLoS One ; 10(4): e0123852, 2015.
Article in English | MEDLINE | ID: mdl-25859655

ABSTRACT

Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.


Subject(s)
Brain Injuries/enzymology , Gelatinases/metabolism , Microglia/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Injuries/diagnosis , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Line , Culture Media, Conditioned/metabolism , Disease Models, Animal , Humans , Isoenzymes , Male , Matrix Metalloproteinase 9/metabolism , Mice , Neurogenic Inflammation/metabolism , Rats
18.
ASN Neuro ; 6(6)2014.
Article in English | MEDLINE | ID: mdl-25324465

ABSTRACT

Sutherlandia (Sutherlandia frutescens) and elderberry (Sambucus spp.) are used to promote health and for treatment of a number of ailments. Although studies with cultured cells have demonstrated antioxidative and anti-inflammatory properties of these botanicals, little is known about their ability to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as compared with the ischemic mice fed the control diet. Quantitative digital pathology assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion (I/R) revealed significant reduction in neuronal cell death in both dietary groups. Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated pronounced activation of microglia in the hippocampus and striatum in the ischemic brains 3 days after I/R, and microglial activation was significantly reduced in animals fed supplemented diets. Mitigation of microglial activation by the supplements was further supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase, and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of cytoplasmic processes including oxidative stress and neuroinflammatory responses. These results demonstrate neuroprotective effect of Sutherlandia and American elderberry botanicals against oxidative and inflammatory responses to cerebral I/R.


Subject(s)
Brain Ischemia/diet therapy , Gene Expression Regulation/drug effects , Microglia/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NADPH Oxidases/metabolism , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Perilla frutescens/chemistry , Sambucus/chemistry , Animals , Brain Ischemia/pathology , Disease Models, Animal , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Neurons/metabolism , Neurons/pathology , Phytotherapy , Plant Preparations
19.
PLoS One ; 9(3): e92133, 2014.
Article in English | MEDLINE | ID: mdl-24637518

ABSTRACT

Quantitative assessment of serial brain sections provides an objective measure of neurological events at cellular and molecular levels but is difficult to implement in experimental neuroscience laboratories because of variation from person-to-person and the time required for analysis. Whole slide imaging (WSI) technology, recently introduced for pathological diagnoses, offers an electronic environment and a variety of computational tools for performing high-throughput histological analysis and managing the associated information. In our study, we applied various algorithms to quantify histologic changes associated with brain injury and compared the results to manual assessment. WSI showed a high degree of concordance with manual quantitation by Pearson correlation and strong agreement using Bland-Altman plots in: (i) cortical necrosis in cresyl-violet-stained brain sections of mice after focal cerebral ischemia; (ii) intracerebral hemorrhage in ischemic mouse brains for automated annotation of the small regions, rather than whole hemisphere of the tissue sections; (iii) Iba1-immunoreactive cell density in the adjacent and remote brain regions of mice subject to controlled cortical impact (CCI); and (iv) neuronal degeneration by silver staining after CCI. These results show that WSI, when appropriately applied and carefully validated, is a highly efficient and unbiased tool to locate and identify neuropathological features, delineate affected regions and histologically quantify these events.


Subject(s)
Brain Injuries/pathology , Neuroimaging/methods , Algorithms , Animals , Automation , Brain Injuries/complications , Cell Count , Cerebral Cortex/pathology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/pathology , Necrosis , Nerve Degeneration/complications , Nerve Degeneration/pathology , Pilot Projects , Silver Staining
20.
PLoS One ; 9(12): e116056, 2014.
Article in English | MEDLINE | ID: mdl-25551568

ABSTRACT

A spontaneous late-ripening mutant of 'Jincheng' (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening.


Subject(s)
Abscisic Acid/biosynthesis , Citrus sinensis/growth & development , Citrus sinensis/genetics , Cyclopentanes/metabolism , Oxylipins/metabolism , Sucrose/metabolism , Base Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant , Phosphoprotein Phosphatases/biosynthesis , Phosphoprotein Phosphatases/genetics , Plant Proteins/genetics , Protein Phosphatase 2C , Protein Serine-Threonine Kinases/biosynthesis , Protein Serine-Threonine Kinases/genetics , Sequence Analysis, RNA , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...