Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Small ; : e2310795, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501992

ABSTRACT

Developing the second near-infrared (NIR-II) photoacoustic (PA) agent is of great interest in bioimaging. Ag2 Se quantum dots (QDs) are one kind of potential probe for applications in NIR-II photoacoustic imaging (PAI). However, the surfaces with excess anions of Ag2 Se QDs, which increase the probability of nonradiative transitions of excitons benefiting PA imaging, are not conducive to binding electron donor ligands for potential biolabeling and imaging. In this study, Staphylococcus aureus (S. aureus) cells are driven for the biosynthesis of Ag2 Se QDs with catalase (CAT). Biosynthesized Ag2 Se (bio-Ag2 Se-CAT) QDs are produced in Se-enriched environment of S. aureus and have a high Se-rich surface. The photothermal conversion efficiency of bio-Ag2 Se-CAT QDs at 808 and 1064 nm is calculated as 75.3% and 51.7%, respectively. Additionally, the PA signal responsiveness of bio-Ag2 Se-CAT QDs is ≈10 times that of the commercial PA contrast agent indocyanine green. In particular, the bacterial CAT is naturally attached to bio-Ag2 Se-CAT QDs surface, which can effectively relieve tumor hypoxia. The bio-Ag2 Se-CAT QDs can relieve heat-initiated oxidative stress while undergoing effective photothermal therapy (PTT). Such biosynthesis method of NIR-II bio-Ag2 Se-CAT QDs opens a new avenue for developing multifunctional nanomaterials, showing great promise for PAI, hypoxia alleviation, and PTT.

2.
Anal Chem ; 96(13): 5315-5322, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38511619

ABSTRACT

Photoacoustic imaging (PAI) in the second near-infrared region (NIR-II), due to deeper tissue penetration and a lower background interference, has attracted widespread concern. However, the development of NIR-II nanoprobes with a large molar extinction coefficient and a high photothermal conversion efficiency (PCE) for PAI and photothermal therapy (PTT) is still a big challenge. In this work, the NIR-II CuTe nanorods (NRs) with large molar extinction coefficients ((1.31 ± 0.01) × 108 cm-1·M-1 at 808 nm, (7.00 ± 0.38) × 107 cm-1·M-1 at 1064 nm) and high PCEs (70% at 808 nm, 48% at 1064 nm) were synthesized by living Staphylococcus aureus (S. aureus) cells as biosynthesis factories. Due to the strong light-absorbing and high photothermal conversion ability, the in vitro PA signals of CuTe NRs were about 6 times that of indocyanine green (ICG) in both NIR-I and NIR-II. In addition, CuTe NRs could effectively inhibit tumor growth through PTT. This work provides a new strategy for developing NIR-II probes with large molar extinction coefficients and high PCEs for NIR-II PAI and PTT.


Subject(s)
Nanoparticles , Nanotubes , Photoacoustic Techniques , Phototherapy/methods , Photoacoustic Techniques/methods , Staphylococcus aureus , Theranostic Nanomedicine/methods
3.
Nat Commun ; 14(1): 197, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639379

ABSTRACT

The blood-brain barrier breakdown, as a prominent feature after traumatic brain injury, always triggers a cascade of biochemical events like inflammatory response and free radical-mediated oxidative damage, leading to neurological dysfunction. The dynamic monitoring the status of blood-brain barrier will provide potent guidance for adopting appropriate clinical intervention. Here, we engineer a near-infrared-IIb Ag2Te quantum dot-based Mn single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown of mice after traumatic brain injury. The dynamic change of blood-brain barrier, including the transient cerebral hypoperfusion and cerebrovascular damage, could be resolved with high spatiotemporal resolution (150 ms and ~ 9.6 µm). Notably, the isolated single Mn atoms on the surface of Ag2Te exhibited excellent catalytic activity for scavenging reactive oxygen species to alleviate neuroinflammation in brains. The timely injection of Mn single-atom catalyst guided by imaging significantly promoted the reconstruction of blood-brain barrier and recovery of neurological function after traumatic brain injury.


Subject(s)
Blood-Brain Barrier , Brain Injuries, Traumatic , Mice , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/metabolism , Brain/diagnostic imaging , Brain/metabolism , Free Radicals/metabolism , Oxidative Stress
4.
ACS Appl Mater Interfaces ; 14(9): 11167-11176, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35226454

ABSTRACT

Magnetic resonance imaging (MRI) has excellent potential in the clinical monitoring of tumors because it can provide high-resolution soft tissue imaging. However, commercial contrast agents (CAs) used in MRI still have some problems such as potential toxicity to the human body, low relaxivity, and a short MRI acquisition window. In this study, ultrasmall MnSe nanoparticles are synthesized by living Staphylococcus aureus cells. The as-prepared MnSe nanoparticles are monodispersed with a uniform particle size (3.50 ± 0.52 nm). Due to the ultrasmall particle size and good water solubility, the MnSe nanoparticles exhibit in vitro high longitudinal relaxivity properties (14.12 ± 1.85 mM-1·s-1). The CCK-8 colorimetric assay, histological analysis, and body weight results show that the MnSe nanoparticles do not have appreciable toxicity on cells and organisms. Besides, the MnSe nanoparticles as T1-MRI CAs offer a long MRI acquisition window to tumor imaging (∼7 h). This work provides a promising T1-MRI CA for clinical tumor imaging and a good reference for the application of functional MnSe nanoparticles in the biomedicine field.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Manganese Compounds/chemistry , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Selenium Compounds/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Contrast Media/administration & dosage , Contrast Media/adverse effects , Disease Models, Animal , Female , Injections, Intravenous , Manganese Compounds/administration & dosage , Manganese Compounds/adverse effects , Manganese Compounds/pharmacology , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/adverse effects , Particle Size , Selenium Compounds/administration & dosage , Selenium Compounds/adverse effects , Selenium Compounds/pharmacology , Solubility , Staphylococcus aureus/metabolism
5.
J Orthop Translat ; 24: 112-120, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32775203

ABSTRACT

BACKGROUND/OBJECTIVES: For treatment of large bone defects challenging in orthopaedic clinics, bone graft substitutes are commonly used for the majority of surgeons. It would be proposed in the current study that our bioactive scaffolds could additionally serve as a local delivery system for therapeutic small molecule agents capable of providing support to enhance biological bone repair. METHODS: In this study, composite scaffolds made of poly (lactic-co-glycolic acid) (PLGA) and tricalcium phosphate (TCP) named by P/T was fabricated by a low-temperature rapid prototyping technique. For optimizing the scaffolds, the phytomolecule icaritin (ICT) was incorporated into P/T scaffolds called P/T/ICT. The osteogenic efficacies of the two groups of scaffolds were compared in a successfully established calvarial defect model in rats. Bone regeneration was evaluated by X-ray, micro-computerised tomography (micro-CT), and histology at weeks 4 and/or 8 post-implantation. In vitro induction of osteogenesis and osteoclastogenesis was established for identification of differentiation potentials evoked by icaritin in primary cultured precursor cells. RESULTS: The results of radiographies and decalcified histology demonstrated more area and volume fractions of newly formed bone within bone defect sites implanted with P/T/ICT scaffold than that with P/T scaffold. Undecalcified histological results presented more osteoid and mineralized bone tissues, and also more active bone remodeling in P/T/ICT group than that in P/T group. The results of histological staining in osteoclast-like cells and newly formed vessels indicated favorable biocompatibility, rapid bioresorption and more new vessel growth in P/T/ICT scaffolds in contrast to P/T scaffolds. Based on in vitro induction, the results presented that icaritin could significantly facilitate osteogenic differentiation, while suppressed adipogenic differentiation. Meanwhile, icaritin demonstrated remarkable inhibition of osteoclastogenic differentiation. CONCLUSION: The finding that P/T/ICT composite scaffold can enhance bone regeneration in calvarial bone defects through facilitating effective bone formation and restraining excessive bone resorption. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: The osteogenic bioactivity of icaritin facilitated PLGA/TCP/icartin composite scaffold to exert significant bone regeneration in calvarial defects in rat model. It might form an optimized foundation for potential clinical validation in bone defects application.

6.
Int J Mol Sci ; 18(1)2017 Jan 04.
Article in English | MEDLINE | ID: mdl-28054960

ABSTRACT

Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen-chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen-chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials.


Subject(s)
Chitosan/chemistry , Chondrocytes/cytology , Chondrogenesis , Collagen Type II/chemistry , Lactic Acid/chemistry , Magnetite Nanoparticles/analysis , Polyglycolic Acid/chemistry , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Chondrocytes/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer , Rabbits , Tissue Engineering
7.
Bone ; 83: 190-196, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26597781

ABSTRACT

In an established steroid-associated osteonecrosis (SAON) rabbit model we found recently that blockage Src by siRNA could improve reconstructive repair of osteonecrosis via enhancing osteogenesis and inhibiting bone resorption. The current study investigated if blocking Src was able to prevent steroid-associated osteoporosis (SAOP) in the same SAON animal model. Rabbits were treated with pulsed lipopolysaccharide (LPS) and corticosteroid methylprednisolone (MPS). At 2, 4, and 6weeks after induction, Src siRNA, control siRNA and saline were intramedullary injected into proximal femur, respectively. Two fluorescent dyes xylenol orange and calcein green were injected before sacrificing the animals for in vivo labeling of the newly formed bone. At week 6 after induction, proximal femora of rabbits were dissected for micro-CT and histological analysis. Results showed significant bone loss in the metaphysis of femoral head in the control rabbits after SAON induction. Src siRNA treatment was able to prevent steroid-associate bone loss in trabecular bone and increase cortical bone thickness at femoral neck. Histomorphometry showed that Src siRNA increased the osteoblastic bone formation and decreased the eroded bone surfaces suggesting decreased osteoclastic bone resorption. This was the first study to report bone loss after SAON induction in rabbit model that could be prevented by knocking down Src by siRNA.


Subject(s)
Adrenal Cortex Hormones/adverse effects , Osteoporosis/chemically induced , Osteoporosis/prevention & control , RNA, Small Interfering/therapeutic use , src-Family Kinases/metabolism , Animals , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Calcification, Physiologic , Disease Models, Animal , Gene Silencing , Male , Osteoporosis/diagnostic imaging , Osteoporosis/physiopathology , Rabbits , Real-Time Polymerase Chain Reaction , X-Ray Microtomography
8.
Clin Nutr ; 35(2): 388-393, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25771490

ABSTRACT

BACKGROUND & AIMS: Gestational diabetes mellitus (GDM) may increase the future health risks of women and their offspring. The aim of this study was to determine the effect of capsaicin supplementation on blood glucose, lipid metabolism and pregnancy outcomes in women with GDM. METHODS: Forty-four pregnant women with GDM at 22-33 gestational weeks were randomly assigned to the capsaicin group (5 mg/d of capsaicin) or to the placebo group (0 mg/d of capsaicin) for 4 weeks in a randomized, double-blind, placebo-controlled trial. The concentrations of fasting plasma glucose and serum insulin, 2-h postprandial plasma glucose (2-h PG) and serum insulin (2-h INS), and fasting serum lipids, liver and kidney function parameters, and calcitonin gene-related peptide (CGRP) were measured at 0 and 4 weeks. The maternal and neonatal outcomes were also recorded. RESULTS: Forty-two women completed the trial. Compared to the placebo group, 2-h PG and 2-h INS concentrations and 2-h postprandial HOMA-IR (2-h HOMA-IR) levels, and the fasting serum total cholesterol and triglycerides concentrations significantly decreased in the capsaicin group after treatment (P < 0.05). Moreover, the fasting serum apolipoprotein B and CGRP concentrations significantly increased in the capsaicin group (P < 0.05). The changes in the 2-h PG and 2-h INS concentrations and in the 2-h HOMA-IR were negatively correlated with the change in the serum CGRP concentration (P < 0.05). Furthermore, the incidence of large-for-gestational-age (LGA) newborns was significantly lower in the capsaicin group than in the placebo group (P = 0.022). CONCLUSIONS: Capsaicin-containing chili supplementation regularly improved postprandial hyperglycemia and hyperinsulinemia as well as fasting lipid metabolic disorders in women with GDM, and it decreased the incidence of LGA newborns.


Subject(s)
Capsaicin/administration & dosage , Diabetes, Gestational/drug therapy , Fetal Macrosomia/epidemiology , Phytotherapy , Pregnancy Complications/epidemiology , Adult , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Blood Glucose/metabolism , Body Mass Index , Calcitonin Gene-Related Peptide/blood , Capsicum/chemistry , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Dietary Supplements , Double-Blind Method , Dyslipidemias/drug therapy , Female , Fetal Macrosomia/prevention & control , Humans , Hyperglycemia/drug therapy , Hyperinsulinism/drug therapy , Incidence , Insulin/blood , Insulin Resistance , Life Style , Plant Preparations/administration & dosage , Pregnancy , Pregnancy Complications/prevention & control , Pregnancy Outcome , Triglycerides/blood
9.
J Orthop Translat ; 4: 14-27, 2016 Jan.
Article in English | MEDLINE | ID: mdl-30035062

ABSTRACT

BACKGROUND/OBJECTIVE: Epimedii Folium is the most important osteogenic herb formulated for the traditional Chinese Medicine Xian Ling Gu Bao (XLGB) capsule. The present study compared XLGB capsules containing two different Epimedium species, i.e., either Epimedium pubescens (XEP) or Epimedium koreanum (XEK), with the focus being on the chemical constituents and antiosteoporotic efficacy. METHODS: Ultra performance liquid chromatography was used to demonstrate the different chemical constituents. Biomechanical tests, histological, and cytological evaluation were performed to characterise and compare the bone mineral density, bone strength, microstructure of bone tissue, and biological activity between XEP and XEK using an established ovariectomised (OVX) rat model. RESULTS: Six flavonoids with different contents between XEK and XEP were identified. As compared with the OVX group, significantly higher bone mineral density, elastic-modulus, and compressive strength were found in both the XEK group and XEP group (p < 0.05 for all, n = 8). Histomorphometric data presented significantly higher osteoblast surface ratio and osteoid area accompanied by significantly lower values of erosion surface and adiopocytes area in two treatment groups (p < 0.05, n = 6). XLGB Fufang with either XEK or XEP all showed significant preventive effects in OVX-induced osteoporosis and deterioration of bone mechanical properties. CONCLUSION: The significance of the current preclinical experimental study was that these two Epimedium species used for formulating XLGB capsules were equally effective for the prevention of oestrogen-depletion induced osteoporosis.

10.
PLoS One ; 10(7): e0133496, 2015.
Article in English | MEDLINE | ID: mdl-26226139

ABSTRACT

UNLABELLED: Fish oil has been used effectively in the treatment of cardiovascular disease via triglyceride reduction and inflammation modulation. This study aimed to assess the effects of fish oil on patients with nonalcoholic fatty liver disease (NAFLD) associated with hyperlipidemia. Eighty participants with NAFLD associated with hyperlipidemia were randomly assigned to consume fish oil (n=40, 4 g/d) or corn oil capsules (n=40, 4 g/d) for 3 months in a double-blind, randomized clinical trial. Blood levels of lipids, glucose and insulin, liver enzymes, kidney parameters and cytokines at baseline and the end of the study were measured. Seventy people finished the trial. Plasma concentrations of eicosapentaenoic acid and docosahexaenoic acid significantly increased in the fish oil group after intervention. After adjustment for age, gender and BMI, fish oil significantly decreased fasting serum concentrations of total cholesterol, triglyceride, apolipoprotein B and glucose (by (mean±SD) 0.49±0.43 mmol/L, 0.58±0.89 mmol/L, 0.28±0.33 g/L and 0.76±0.56 mmol/L, respectively, P<0.05), as well as alanine aminotransferase and γ-glutamyl transpeptidase levels (by (median (interquartile)) 9.0(0.5, 21.5) and 7.0(2.2, 20.0) IU/L, respectively, P<0.05), significantly increased serum adiponectin levels (by 1.29±0.62 µg/mL, P<0.001), and reduced serum levels of tumor necrosis factor α, leukotrienes B4, fibroblast growth factor 21 (FGF21), cytokeratin 18 fragment M30 and prostaglandin E2 (by 1.70±1.18 pg/mL, 0.59±0.28 ng/mL, 121±31 pg/mL, 83±60 IU/L and 10.9±2.3 pg/mL, respectively, P<0.001). Corn oil had no effect except for increasing serum creatinine concentrations by 7.7±8.9 µmol/L (P=0.008). The effects of fish oil on lipids, glucose and γ-glutamyl transpeptidase were positively correlated with the reductions of serum FGF21 and prostaglandin E2 concentrations after adjustment for age, gender and BMI (r = 0.275 to 0.360 and 0.261 to 0.375, respectively, P<0.05). In conclusion, our findings suggest that fish oil can benefit metabolic abnormalities associated with NAFLD treatment. TRIAL REGISTRATION: ChiCTR-TRC-12002380.


Subject(s)
Blood Glucose/drug effects , Dinoprostone/metabolism , Fibroblast Growth Factors/metabolism , Fish Oils/therapeutic use , Hyperlipidemias/metabolism , Lipids/blood , Non-alcoholic Fatty Liver Disease/drug therapy , Adult , Dietary Supplements , Docosahexaenoic Acids/metabolism , Double-Blind Method , Eicosapentaenoic Acid/metabolism , Female , Glucose/metabolism , Humans , Hyperlipidemias/blood , Insulin/blood , Kidney Function Tests/methods , Liver Function Tests/methods , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/metabolism
11.
Nutrients ; 7(5): 3739-50, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25988766

ABSTRACT

The purpose of the present study was to investigate the effects of supplementation with a carbohydrate-electrolyte solution (CES) in active females during a prolonged session of submaximal running to exhaustion. Eight healthy active females volunteered to perform a session of open-ended running to exhaustion at 70% of their maximal oxygen consumption on a treadmill during the follicular phase of their menstrual cycle on two occasions. During each run, the subjects consumed either 3mL·kg(-1) body mass of a 6% CES or a placebo drink (PL) every 20 min during exercise. The trials were administered in a randomized double-blind, cross-over design. During the run, the subjects ingested similar volumes of fluid in two trials (CES: 644 ± 75 mL vs. PL: 593 ± 66 mL, p > 0.05). The time to exhaustion was 16% longer during the CES trial (106.2 ± 9.4 min) than during the PL trial (91.6 ± 5.9 min) (p < 0.05). At 45 min during exercise, the plasma glucose concentration in the CES trial was higher than that in PL trial. No differences were observed in the plasma lactate level, respiratory exchange ratio, heart rate, perceived rate of exertion, sensation of thirst, or abdominal discomfort between the two trials (p > 0.05). The results of the present study confirm that CES supplementation improves the moderate intensity endurance capacity of active females during the follicular phases of the menstrual cycle. However, the exogenous oxidation of carbohydrate does not seem to explain the improved capacity after CES supplementation.


Subject(s)
Dietary Carbohydrates/pharmacology , Dietary Supplements , Electrolytes/pharmacology , Fatigue/prevention & control , Physical Endurance/drug effects , Running/physiology , Adult , Blood Glucose/metabolism , Dietary Carbohydrates/metabolism , Double-Blind Method , Female , Humans , Menstrual Cycle , Oxygen Consumption , Physical Endurance/physiology , Physical Exertion , Solutions
12.
Mol Nutr Food Res ; 59(8): 1443-57, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25943029

ABSTRACT

SCOPE: Resveratrol (RSV), a natural polyphenol, has been reported to attenuate nonalcoholic fatty liver disease (NAFLD); however, its underlying mechanism is unclear. Autophagy was recently identified as a critical protective mechanism during NAFLD development. Therefore, we investigated the role of autophagy in the beneficial effects of RSV on hepatic steatosis. METHODS AND RESULTS: Via Oil red O staining, triglyceride, and ß-hydroxybutyrate detection, we found that RSV decreased palmitate-induced lipid accumulation and stimulated fatty acid ß-oxidation in hepatocytes. Based on Western blot assay, confocal microscopy and transmission electron microscopy, we found that RSV induced autophagy in hepatocytes, whereas autophagy inhibition markedly abolished RSV-mediated hepatic steatosis improvement. Moreover, RSV increased cAMP levels and the levels of SIRT1 (sirtuin 1), pPRKA (phosphorylated protein kinase A), and pAMPK (phosphorylated AMP-activated protein kinase), as well as SIRT1 activity in HepG2 cells. Incubation with inhibitors of AC (adenylyl cyclase), PRKA, AMPK, SIRT1, or with AC, PRKA, AMPK, or SIRT1 siRNA abolished RSV-mediated autophagy. Similar results were obtained in mice with hepatic steatosis. CONCLUSION: RSV improved hepatic steatosis partially by inducing autophagy via the cAMP-PRKA-AMPK-SIRT1 signaling pathway, which provides new evidence regarding RSV's effects on NAFLD treatment.


Subject(s)
Antioxidants/therapeutic use , Autophagy , Cyclic AMP/agonists , Dietary Supplements , Liver/metabolism , Non-alcoholic Fatty Liver Disease/diet therapy , Second Messenger Systems , Stilbenes/therapeutic use , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Animals , Antioxidants/metabolism , Autophagy/drug effects , Cyclic AMP/antagonists & inhibitors , Cyclic AMP/metabolism , Enzyme Induction/drug effects , Enzyme Inhibitors/pharmacology , Fatty Acids, Nonesterified/adverse effects , Fatty Acids, Nonesterified/antagonists & inhibitors , Fatty Acids, Nonesterified/metabolism , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Liver/ultrastructure , Mice, 129 Strain , Microscopy, Electron, Transmission , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , RNA Interference , Resveratrol , Second Messenger Systems/drug effects , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/chemistry , Sirtuin 1/genetics , Sirtuin 1/metabolism , Stilbenes/metabolism
13.
J Bone Miner Res ; 30(11): 2044-57, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25917347

ABSTRACT

Vascular hyperpermeability and highly upregulated bone resorption in the destructive repair progress of steroid-associated osteonecrosis (SAON) are associated with a high expression of VEGF and high Src activity (Src is encoded by the cellular sarcoma [c-src] gene). This study was designed to prove our hypothesis that blocking the VEGF-Src signaling pathway by specific Src siRNA is able to prevent destructive repair in a SAON rabbit model. Destructive repair in SAON was induced in rabbits. At 2, 4, and 6 weeks after SAON induction, VEGF, anti-VEGF, Src siRNA, Src siRNA+VEGF, control siRNA, and saline were introduced via intramedullary injection into proximal femora for each group, respectively. Vascularization and permeability were quantified by dynamic contrast-enhanced (DCE) MRI. At week 6 after SAON induction, proximal femurs were dissected for micro-computed tomography (µCT)-based trabecular architecture with finite element analysis (FEA), µCT-based angiography, and histological analysis. Histological evaluation revealed that VEGF enhanced destructive repair, whereas anti-VEGF prevented destructive repair and Src siRNA and Src siRNA+VEGF prevented destructive repair and enhanced reparative osteogenesis. Findings of angiography and histomorphometry were consistent with those determined by DCE MRI. Src siRNA inhibited VEGF-mediated vascular hyperpermeability but preserved VEGF-induced neovascularization. Bone resorption was enhanced in the VEGF group and inhibited in the anti-VEGF, Src siRNA, Src siRNA+VEGF groups as determined by both 3D µCT and 2D histomorphometry. FEA showed higher estimated failure load in the Src siRNA and Src siRNA+VEGF groups when compared to the vehicle control group. Blockage of VEGF-Src signaling pathway by specific Src siRNA was able to prevent steroid-associated destructive repair while improving reconstructive repair in SAON, which might become a novel therapeutic strategy.


Subject(s)
Osteonecrosis/chemically induced , Osteonecrosis/enzymology , RNA, Small Interfering/metabolism , Steroids/adverse effects , Wound Healing , src-Family Kinases/antagonists & inhibitors , Animals , Disease Models, Animal , Finite Element Analysis , Gene Knockdown Techniques , Gene Silencing , Male , Models, Biological , Osteogenesis , Osteonecrosis/diagnostic imaging , Osteonecrosis/pathology , Perfusion , Rabbits , X-Ray Microtomography , src-Family Kinases/metabolism
14.
J Orthop Res ; 31(1): 164-72, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22807243

ABSTRACT

This study was designed to develop a bioactive scaffold to enhance bone defect repair in steroid-associated osteonecrosis (SAON). Icaritin, a metabolite of the herb Epimedium, has been identified as an angiogenic and osteogenic phytomolecule. Icaritin was homogenized into poly lactic-co-glycolic acid/tricalcium phosphate (PLGA/TCP) to form an icaritin-releasing porous composite scaffold (PLGA/TCP/icaritin) by fine-spinning technology. In vitro, high performance liquid chromatography was used to determine the release of icaritin during degradation of PLGA/TCP/icaritin. The osteogenic effects of PLGA/TCP/icaritin were evaluated using rat bone marrow mesenchymal stem cells (BMSCs). In vivo, the osteogenic effect of PLGA/TCP/icaritin was determined within a bone tunnel after core decompression in SAON rabbits and angiography within scaffolds was examined in rabbit muscle pouch model. In vitro study confirmed the sustainable release of icaritin from PLGA/TCP/icaritin with the bioactive scaffold promoting the proliferation and osteoblastic differentiation of rat BMSCs. In vivo study showed that PLGA/TCP/icaritin significantly promoted new bone formation within the bone defect after core decompression in SAON rabbits and enhanced neovascularization in the rabbit muscle pouch experiment. In conclusion, PLGA/TCP/icaritin is an innovative local delivery system that demonstrates sustainable release of osteogenic phytomolecule icaritin enhancing bone repair in an SAON rabbit model. The supplement of scaffold materials with bioactive phytomolecule(s) might improve treatment efficiency in challenging orthopedic conditions.


Subject(s)
Femoral Fractures/therapy , Flavonoids/pharmacology , Fracture Healing/drug effects , Osteogenesis/drug effects , Phytoestrogens/pharmacology , Tissue Scaffolds , Animals , Bone Marrow Cells/cytology , Calcium Phosphates/pharmacology , Cells, Cultured , Disease Models, Animal , Femoral Fractures/etiology , Femoral Fractures/physiopathology , Fracture Healing/physiology , Lactic Acid/pharmacology , Male , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Osteogenesis/physiology , Osteonecrosis/complications , Osteonecrosis/physiopathology , Osteonecrosis/therapy , Polyglycolic Acid/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer , Rabbits , Rats , Tissue Engineering/methods
15.
PLoS One ; 7(8): e41264, 2012.
Article in English | MEDLINE | ID: mdl-22952579

ABSTRACT

We found that Icaritin, an intestinal metabolite of Epimedium-derived flavonoids (EF) enhanced osteoblastic differentiation of mesenchymal stem cells (MSCs) only under osteogenic induction conditions. We also demonstrated its effect on inhibition of adipogenic differentiation of MSCs. Unlike the findings of others on EF compounds, we showed that Icaritin was unable to promote proliferation, migration and tube like structure formation by human umbilical vein endothelial cells (HUVECs) in vitro. These results suggested that the exogenous phytomolecule Icaritin possessed the potential for enhancing bone formation via its osteopromotive but not an osteoinductive mechanism. Though some flavonoids were shown to regulate the coupling process of angiogenesis and osteogenesis during bone repair, our results suggested that Icaritin did not have direct effect on enhancing angiogenesis in vitro.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Endothelial Cells/drug effects , Flavonoids/metabolism , Neovascularization, Pathologic , Osteogenesis/physiology , Bone Marrow Cells/cytology , Bone and Bones/metabolism , Cell Differentiation , Cell Movement , Cell Proliferation , Drug Screening Assays, Antitumor , Endothelial Cells/cytology , Flavonoids/pharmacology , Humans , In Vitro Techniques , Osteoblasts/cytology , Phenotype , Stem Cells/cytology , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology
16.
World J Gastroenterol ; 18(35): 4934-43, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-23002367

ABSTRACT

AIM: To investigate the correlation of hyperlipemia (HL) and acute cerebral ischemia/reperfusion (I/R) injury on liver damage and its mechanism. METHODS: Rats were divided into 4 groups: control, HL, I/R and HL+I/R. After the induction of HL via a high-fat diet for 18 wk, middle cerebral artery occlusion was followed by 24 h of reperfusion to capture I/R. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) were analyzed as part of liver function tests and liver damage was further assessed by histological examination. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The expression of genes related to apoptosis (caspase-3, bcl-2) was assayed by immunohistochemistry and Western blotting. Serum tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and liver mitochondrial superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and Ca(2+) levels were measured to determine inflammatory and oxidative/antioxidative status respectively. Microsomal hydroxylase activity of the cytochrome P450 2E1 (CYP2E1)-containing enzyme was measured with aniline as the substrate, and CYP2E1 expression in the liver tissue and microsome was determined by immunohistochemistry and Western blotting respectively. RESULTS: HL alone induced by high-fat diet for 18 wk resulted in liver damage, indicated by histopathological analysis, and a considerable increase in serum ALT (25.13 ± 16.90 vs 9.56 ± 1.99, P < 0.01) and AST levels (18.01 ± 10.00 vs 11.33 ± 4.17, P < 0.05) compared with control. Moreover, HL alone induced hepatocyte apoptosis, which was determined by increased TUNEL-positive cells (4.47 ± 0.45 vs 1.5 ± 0.22, P < 0.01), higher caspase-3 and lower bcl-2 expression. Interestingly, compared with those in control, HL or I/R groups, massive increases of serum ALT (93.62 ± 24.00 vs 9.56 ± 1.99, 25.13 ± 16.90 or 12.93 ± 6.14, P < 0.01) and AST (82.32 ± 26.92 vs 11.33 ± 4.17, 18.01 ± 10.00 or 14.00 ± 6.19, P < 0.01) levels in HL+I/R group were observed suggesting severe liver damage, which was confirmed by liver histology. In addition, HL combined with I/R also caused significantly increased hepatocyte apoptosis, as evidenced by increased TUNEL-positive cells (6.20 ± 0.29 vs 1.5 ± 0.22, 4.47 ± 0.45 or 1.97 ± 0.47, P < 0.01), elevated expression of caspase-3 and lower expression of bcl-2. Furthermore, when compared to HL or I/R alone, HL plus I/R enhanced serum TNF-α, IL-1, liver mitochondrial MDA and Ca(2+) levels, suppressed SOD and GSH-Px in liver mitochondria, and markedly up-regulated the activity (11.76 ± 2.36 vs 4.77 ± 2.31 or 3.11 ± 1.35, P < 0.01) and expression (3.24 ± 0.38 vs 1.98 ± 0.88 or 1.72 ± 0.58, P < 0.01) of CYP2E1 in liver. CONCLUSION: The coexistence of HL and acute cerebral I/R induces severe liver damage, suggesting that cerebral ischemic stroke would exaggerate the damage of liver caused by HL. This effect is possibly due to enhanced CYP2E1 induction which further promotes oxidative damage, inflammation and hepatocyte apoptosis.


Subject(s)
Brain/blood supply , Hyperlipidemias/complications , Liver Diseases/etiology , Reperfusion Injury/complications , Acute Disease , Alanine Transaminase/blood , Animals , Apoptosis , Aspartate Aminotransferases/blood , Biomarkers/blood , Blotting, Western , Calcium/metabolism , Caspase 3/metabolism , Cytochrome P-450 CYP2E1/metabolism , Diet, High-Fat , Disease Models, Animal , Glutathione Peroxidase/metabolism , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Infarction, Middle Cerebral Artery/complications , Interleukin-1/blood , Liver/metabolism , Liver/pathology , Liver Diseases/blood , Liver Diseases/pathology , Male , Malondialdehyde/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Superoxide Dismutase/metabolism , Time Factors , Tumor Necrosis Factor-alpha/blood
17.
Int J Mol Sci ; 13(5): 5952-5971, 2012.
Article in English | MEDLINE | ID: mdl-22754342

ABSTRACT

This current work was to investigate the biological effects of acidic cosmetic water (ACW) on various biological assays. ACW was isolated from seawater and demonstrated several bio-functions at various concentration ranges. ACW showed a satisfactory effect against Staphylococcus aureus, which reduced 90% of bacterial growth after a 5-second exposure. We used cultured human peripheral blood mononuclear cells (PBMCs) to test the properties of ACW in inflammatory cytokine release, and it did not induce inflammatory cytokine release from un-stimulated, normal PBMCs. However, ACW was able to inhibit bacterial lipopolysaccharide (LPS)-induced inflammatory cytokine TNF-α released from PBMCs, showing an anti-inflammation potential. Furthermore, ACW did not stimulate the rat basophilic leukemia cell (RBL-2H3) related allergy response on de-granulation. Our data presented ACW with a strong anti-oxidative ability in a superoxide anion radical scavenging assay. In mass spectrometry information, magnesium and zinc ions demonstrated bio-functional detections for anti-inflammation as well as other metal ions such as potassium and calcium were observed. ACW also had minor tyrosinase and melanin decreasing activities in human epidermal melanocytes (HEMn-MP) without apparent cytotoxicity. In addition, the cell proliferation assay illustrated anti-growth and anti-migration effects of ACW on human skin melanoma cells (A375.S2) indicating that it exerted the anti-cancer potential against skin cancer. The results obtained from biological assays showed that ACW possessed multiple bioactivities, including anti-microorganism, anti-inflammation, allergy-free, antioxidant, anti-melanin and anticancer properties. To our knowledge, this was the first report presenting these bioactivities on ACW.


Subject(s)
Antioxidants/pharmacology , Escherichia coli/drug effects , Leukocytes, Mononuclear/drug effects , Mast Cells/drug effects , Melanocytes/drug effects , Seawater/chemistry , Staphylococcus aureus/drug effects , Adult , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Escherichia coli/growth & development , Humans , Leukocytes, Mononuclear/cytology , Mast Cells/cytology , Mast Cells/pathology , Melanocytes/cytology , Rats , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...