Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 148: 107467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772290

ABSTRACT

KRAS-G12C inhibitors has been made significant progress in the treatment of KRAS-G12C mutant cancers, but their clinical application is limited due to the adaptive resistance, motivating development of novel structural inhibitors. Herein, series of coumarin derivatives as KRAS-G12C inhibitors were found through virtual screening and rational structural optimization. Especially, K45 exhibited strong antiproliferative potency on NCI-H23 and NCI-H358 cancer cells harboring KRAS-G12C with the IC50 values of 0.77 µM and 1.50 µM, which was 15 and 11 times as potent as positive drug ARS1620, respectively. Furthermore, K45 reduced the phosphorylation of KRAS downstream effectors ERK and AKT by reducing the active form of KRAS (KRAS GTP) in NCI-H23 cells. In addition, K45 induced cell apoptosis by increasing the expression of anti-apoptotic protein BAD and BAX in NCI-H23 cells. Docking studies displayed that the 3-naphthylmethoxy moiety of K45 extended into the cryptic pocket formed by the residues Gln99 and Val9, which enhanced the interaction with the KRAS-G12C protein. These results indicated that K45 was a potent KRAS-G12C inhibitor worthy of further study.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Coumarins , Drug Screening Assays, Antitumor , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Discovery , Apoptosis/drug effects , Molecular Docking Simulation , Drug Evaluation, Preclinical
2.
Bioorg Med Chem ; 106: 117752, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749341

ABSTRACT

Bromodomain protein 4 (BRD4) is a member of the BET family, and its overexpression is closely associated with the development of many tumors. Inhibition of BRD4 shows great therapeutic potential in anti-tumor, and pan-BRD4 inhibitors show adverse effects of dose limiting toxicity and thrombocytopenia in clinical trials. To improve clinical effects and reduce side effects, more efforts have focused on seeking selective inhibitors of BD1 or BD2. Herein, a series of indole-2-one derivatives were designed and synthesized through docking-guided optimization to find BRD4-BD1 selective inhibitors, and their BRD4 inhibitory and antiproliferation activities were evaluated. Among them, compound 21r had potent BRD4 inhibitory activity (the IC50 values of 41 nM and 313 nM in BD1 and BD2 domain), excellent anti-proliferation (the IC50 values of 4.64 ± 0.30 µM, 0.78 ± 0.03 µM, 5.57 ± 1.03 µM against HL-60, MV-4-11 and HT-29 cells), and displayed low toxicity against normal cell GES-1 cells. Further studies revealed that 21r inhibited proliferation by decreasing the expression of proto-oncogene c-Myc, blocking cell cycle in G0/G1 phase, and inducing apoptosis in MV-4-11 cells in a dose-dependent manner. All the results showed that compound 21r was a potent BRD4 inhibitor with BD1 selectivity, which had potential in treatment of leukemia.


Subject(s)
Antineoplastic Agents , Cell Cycle Proteins , Cell Proliferation , Drug Screening Assays, Antitumor , Indoles , Transcription Factors , Humans , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Drug Discovery , Dose-Response Relationship, Drug , Proto-Oncogene Mas , Apoptosis/drug effects , Molecular Docking Simulation , Cell Line, Tumor , Bromodomain Containing Proteins
3.
Bioorg Chem ; 133: 106412, 2023 04.
Article in English | MEDLINE | ID: mdl-36773456

ABSTRACT

The PI3K/AKT/mTOR signaling pathway is one of the most common abnormal activation pathways in tumor cells, and has associated with multiple functions such as tumor cell growth, proliferation, migration, invasion, and tumor angiogenesis. Here, a series of 3-amino-1H-indazole derivatives were synthesized, and their antiproliferative activities against HT-29, MCF-7, A-549, HepG2 and HGC-27 cells were evaluated. Among them, W24 exhibited the broad-spectrum antiproliferative activity against four cancer cells with IC50 values of 0.43-3.88 µM. Mechanism studies revealed that W24 inhibited proliferation by affecting the DNA synthesis, induced G2/M cell cycle arrest and apoptosis by regulating Cyclin B1, BAD and Bcl-xL, meanwhile induced the change of intracellular ROS and mitochondrial membrane potential in HGC-27 cells. Moreover, W24 inhibited the migration and invasion of HGC-27 cells by decreasing EMT pathway related proteins and reducing the mRNA expression levels of Snail, Slug and HIF-1α. Furthermore, W24 displayed low tissue toxicity profile and good pharmacokinetic properties in vivo. Therefore, 3-amino-1H-indazole derivatives might serve as a new scaffold for the development of PI3K/AKT/mTOR inhibitor and anti-gastric cancer reagent.


Subject(s)
Indazoles , Neoplasms , Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation , Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Indazoles/chemistry , Indazoles/pharmacology
4.
Bioorg Chem ; 133: 106425, 2023 04.
Article in English | MEDLINE | ID: mdl-36801788

ABSTRACT

Vascular epidermal growth factor receptor-2 (VEGFR-2), as an important tyrosine transmembrane protein, plays an important role in regulating endothelial cell proliferation and migration, regulating angiogenesis and other biological functions. VEGFR-2 is aberrantly expressed in many malignant tumors, and it is also related to the occurrence, development, and growth of tumors and drug resistance. Currently, there are nine VEGFR-2 targeted inhibitors approved by US.FDA for clinical use as anticancer drugs. Due to the limited clinical efficacy and potential toxicity of VEGFR inhibitors, it is necessary to develop new strategies to improve the clinical efficacy of VEGFR inhibitors. The development of multitarget therapy, especially dual-target therapy, has become a hot research field of cancer therapy, which may provide an effective strategy with higher therapeutic efficacy, pharmacokinetic advantages and low toxicity. Many groups have reported that the therapeutic effects could be improved by simultaneously inhibiting VEGFR-2 and other targets, such as EGFR, c-Met, BRAF, HDAC, etc. Therefore, VEGFR-2 inhibitors with multi-targeting capabilities have been considered to be promising and effective anticancer agents for cancer therapy. In this work, we reviewed the structure and biological functions of VEGFR-2, and summarized the drug discovery strategies, and inhibitory activities of VEGFR-2 inhibitors with multi-targeting capabilities reported in recent years. This work might provide the reference for the development of VEGFR-2 inhibitors with multi-targeting capabilities as novel anticancer agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Vascular Endothelial Growth Factor Receptor-2 , Humans , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Discovery , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
5.
Bioorg Med Chem ; 78: 117152, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36599264

ABSTRACT

The bromodomain-containing protein 4 (BRD4) has gained growing interest as an effective drug target for the treatment of hepatocellular carcinoma (HCC). Herein, we designed and synthesized a series of quinoxalinone derivatives as BRD4 inhibitors via scaffold hopping. The representative compound X9 showed potent BRD4 inhibitory activity (with IC50 = 82.3 nM), and preferable antiproliferative activity against HepG2 cells (with IC50 = 1.13 ± 0.07 µM), as well as less toxicity against GES-1 cells (with IC50 = 57.24 ± 5.46 µM). Furthermore, compound X9 dose-dependently inhibited colony formation and blocked the migration of HepG2 cells by down-regulating the expression of Snail and MMP-9 while up-regulating the E-cadherin and Occludin. Besides, compound X9 efficiently down-regulated the expression of c-Myc in HepG2 cells, induced apoptosis, and arrested at G0/G1 phase. In total, quinoxalinone was a potential core as BRD4 inhibitor and compound X9 might be effective for liver cancer therapy.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Nuclear Proteins/metabolism , Structure-Activity Relationship , Carcinoma, Hepatocellular/drug therapy , Drug Design , Liver Neoplasms/drug therapy , Transcription Factors , Cell Proliferation , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Cell Cycle Proteins/metabolism
6.
Bioorg Med Chem ; 74: 117067, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36272186

ABSTRACT

PI3Ks and HDACs play essential roles in the occurrence and progression of leukemia. Herein, a series of novel pyrazin-2(1H)-one derivatives were rationally designed and synthesized as novel dual PI3K and HDAC inhibitors based on scaffold replacement and heterozygous strategies. Most of the target compounds showed potent inhibitory potency to PI3Kα and HDAC6. Especially, compound 9q displayed PI3Kα and HDAC6 inhibitory with IC50 values of 372 nM and 4.5 nM, and anti-proliferative activity against MV4-11 cells with IC50 value of 0.093 ± 0.012 µM. Further mechanistic studies revealed that 9q induced apoptosis, arrested the cell cycle in the G2/M phase, promoted the acetylation of α-tubulin, and blocked the PI3K/AKT/mTOR signal way in MV4-11 cells. All the results demonstrated that 9q was a promising lead candidate for further development of novel PI3K/HDAC dual inhibitors for leukemia treatment.


Subject(s)
Antineoplastic Agents , Leukemia , Humans , Histone Deacetylase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Leukemia/drug therapy , Drug Design , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Molecular Docking Simulation
7.
Eur J Med Chem ; 244: 114821, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36242985

ABSTRACT

VEGFR-2 is an attractive therapeutic target for antitumor drug research by blocking tumor angiogenesis and PROTAC provides a new technology for targeted protein knockout. Herein, a library of novel VEGFR-2-PROTAC degraders were rationally designed and synthesized based on the Lys residue region on the surface of VEGFR-2 protein using protein structure-based drug design strategy. Among them, P7 exhibited preferable antitumor activity against HGC-27 cells and less toxic to human normal HUVEC, HEK293T and GES-1 cells in vitro, as well as the potent degradation activity of VEGFR-2 protein in HGC-27 cells (DC50: 0.084 ± 0.04 µM, Dmax: 73.7%) and HUVEC cells (DC50: 0.51 ± 0.10 µM, Dmax: 76.6%). Additionally, P7 degraded VEGFR-2 protein by the formation of ternary complex and the ubiquitin proteasome pathway in HGC-27 cells. Furthermore, P7 shortened the half-life of VEGFR-2 protein synthesis and had no inhibitory effect on the expression of VEGFR-2 mRNA in HGC-27 cells. Moreover, P7 inhibited the colony formation, migration and invasion of HGC-27 cells in a time- and dose-dependent manner, and meanwhile induced G2/M phase cycle arrest and apoptosis. All the results demonstrated that P7 could be as a promising VEGFR-2-PROTAC degrader for gastric cancer therapy.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Vascular Endothelial Growth Factor Receptor-2 , Lysine/pharmacology , Stomach Neoplasms/drug therapy , HEK293 Cells , Proteolysis , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Von Hippel-Lindau Tumor Suppressor Protein
8.
Bioorg Chem ; 128: 106117, 2022 11.
Article in English | MEDLINE | ID: mdl-36063752

ABSTRACT

The bromodomain and extra-terminal (BET) bromodomains, particularly BRD4, have been identified as promising therapeutic targets in the treatment of many human disorders such as cancer. Coumarin is a highly privileged moiety for the development of novel anticancer drugs which has been identified in clinical trials for the treatment of various cancers. Herein, we modified BRD4i ABBV-075 with a coumarin ring and synthesized a novel series of coumarin derivatives as BRD4 inhibitors. Among them, the representative compound 27d showed excellent BRD4 inhibitory activities with an IC50 value of 99 nM in the TR-FRET assay. Compared with ABBV-075, compound 27d displayed a favorable cell proliferation inhibitory activity in solid tumors, such as MCF-7, HGC-27 and HepG-2. Further mechanism investigation illustrated that 27d-treatment resulted in G0/G1 phase arrest and promoted apoptosis of MCF-7 cells. Compound 27d also blocked colony formation in a concentration-dependent manner in McF-7 cell lines. As the downstream-protein of BRD4, the expression of c-Myc was decreased in a dose-dependent manner after the treatment of compound 27d. Moreover, compound 27d also exhibited good in vivo and in vitro metabolic stability. All the findings meaningfully make it as a promising lead compound for further drug development.


Subject(s)
Antineoplastic Agents , Nuclear Proteins , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Coumarins/pharmacology , Drug Design , Drug Screening Assays, Antitumor , Humans , Structure-Activity Relationship , Transcription Factors
9.
Aging Cell ; 20(10): e13454, 2021 10.
Article in English | MEDLINE | ID: mdl-34510683

ABSTRACT

Different cellular and molecular changes underlie the pathogenesis of Alzheimer's disease (AD). Among these, neuron-specific dysregulation is a necessary event for accumulation of classic pathologies including amyloid plaques. Here, we show that AD-associated pathophysiology including neuronal cell death, inflammatory signaling, and endolysosomal dysfunction is spatially colocalized to amyloid plaques in regions with abnormal microRNA-425 (miR-425) levels and this change leads to focal brain microenvironment heterogeneity, that is, an amyloid plaque-associated microenvironment (APAM). APAM consists of multiple specific neurodegenerative signature pathologies associated with senile plaques that contribute to the heterogeneity and complexity of AD. Remarkably, miR-425, a neuronal-specific regulator decreased in AD brain, maintains a normal spatial transcriptome within brain neurons. We tested the hypothesis that miR-425 loss correlates with enhanced levels of mRNA targets downstream, supporting APAM and AD progression. A miR-425-deficient mouse model has enhanced APP amyloidogenic processing, neuroinflammation, neuron loss, and cognitive impairment. In the APP/PS1 mouse model, intervening with miR-425 supplementation ameliorated APAM changes and memory deficits. This study reveals a novel mechanism of dysregulation of spatial transcriptomic changes in AD brain, identifying a probable neuronal-specific microRNA regulator capable of staving off amyloid pathogenesis. Moreover, our findings provide new insights for developing AD treatment strategies with miRNA oligonucleotide(s).


Subject(s)
MicroRNAs/metabolism , Neurodegenerative Diseases/genetics , Plaque, Amyloid/pathology , Animals , Disease Models, Animal , Genetic Heterogeneity , Humans , Male , Mice , Neurodegenerative Diseases/pathology , Tumor Microenvironment
10.
Front Neurol ; 12: 649056, 2021.
Article in English | MEDLINE | ID: mdl-34135847

ABSTRACT

Background: Platelet endothelial aggregation receptor-1 (PEAR1) rs12041331 has been reported to affect agonist-stimulated platelet aggregation, but it remains unclear whether this variant plays a role in recurrent stroke. Here we assess the clinical relevance of PEAR1 rs12041331 in acute minor ischemic stroke (AMIS) and transient ischemic attack (TIA) Chinese patients treated with dual antiplatelet therapy (DAPT). Methods: We recruited 273 consecutive minor stroke and TIA patients, and Cox proportional hazard regression was used to model the relationship between PEAR1 rs12041331 and thrombotic and bleeding events. Results: Genotyping for PEAR1 rs12041331 showed 49 (18.0%) AA homozygotes, 129 (47.3%) GA heterozygotes, and 95 (34.7%) GG homozygotes. No association was observed between PEAR1 rs12041331 genotype and stroke or composite clinical vascular event rates (ischemic stroke, hemorrhagic stroke, TIA, myocardial infarction, or vascular death) or bleeding events regardless if individuals carried one or two copies of the A allele. Our results suggested that rs12041331 genetic polymorphism was not an important contributor to clinical events in AMIS and TIA patients in the setting of secondary prevention. Conclusions: Our data do provide robust evidence that genetic variation in PEAR1 rs12041331 do not contribute to atherothrombotic or bleeding risk in minor stroke and TIA patients treated with DAPT.

11.
Expert Opin Ther Pat ; 31(7): 625-644, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33573401

ABSTRACT

Introduction: Aurora kinases are a family of serine/threonine kinases, and promote mitotic spindle assembly by regulating centrosome duplication and separation. Aurora kinases are overexpressed in a variety of tumor cell lines, thus, the use of Aurora kinase small-molecule inhibitors has become a potential treatment option for cancer.Areas covered: As a continuing review of Aurora kinase inhibitors and their patents published in 2009, 2011 and 2014. Herein, we updated the information for Aurora kinase inhibitors in clinical trials and the patents filed from 2014 to 2020. PubMed, Scopus, SciFinder, and www.clinicaltrials.gov databases were used for searching the clinical information and patents of Aurora kinase inhibitors.Expert opinion: Even though Aurora A or B selective as well as pan inhibitors show preclinical and clinical efficacy, so far, no Aurora kinase inhibitor has been approved for clinical use. Preliminary evidence suggested that highly selective Aurora kinase or multi-target inhibitors as a single agent as well as in combination therapy are still the current main development trend of Aurora kinase inhibitors.


Subject(s)
Aurora Kinases/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Aurora Kinases/metabolism , Cell Line, Tumor , Drug Development , Humans , Neoplasms/enzymology , Patents as Topic
12.
Eur J Med Chem ; 213: 113192, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33493829

ABSTRACT

Vascular endothelial growth factor-2 (VEGFR-2) plays a pivotal role in tumor angiogenesis. Herein, a library of novel 2-(4-(1H-indazol-6-yl)-1H-pyrazol -1-yl)acetamide derivatives were designed and synthesized as VEGFR-2 inhibitors based on scaffold hopping strategy. These compounds exhibited the excellent inhibitory in both VEGFR-2 and tumor cells proliferation. Especially, compound W13 possessed potent VEGFR-2 inhibition with IC50 = 1.6 nM and anti-proliferation against HGC-27 tumor cells with IC50 = 0.36 ± 0.11 µM, as well as less toxicity against normal GES-1 cells with IC50 = 187.46 ± 10.13 µM. Moreover, W13 obviously inhibited colony formation, migration and invasion of HGC-27 cells by adjusting the expression of MMP-9 and E-cadherin, and induced HGC-27 cells apoptosis by increasing ROS production and regulating the expression of apoptotic proteins. Furthermore, W13 blocked the PI3K-Akt-mTOR signaling pathway in HGC-27 cells. In addition, anti-angiogenesis of W13 was proved by inhibiting tube formation and the expression of p-VEGFR-2 in HUVEC cells. All the results demonstrated that W13 could be developing as a promising anticancer agent for gastric cancer therapy.


Subject(s)
Acetamides/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Acetamides/chemical synthesis , Acetamides/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
13.
Bioorg Med Chem ; 31: 115985, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33421913

ABSTRACT

A new series of N-(3,4,5-trimethoxyphenyl)-1H-pyrazolo[3,4-b]pyridin-3-amine derivatives as tubulin polymerization inhibitors were synthesized, and evaluated for the anti-proliferative activities. A structure-activity relationship study revealed that the free amino moiety of 1H-pyrazolo[3,4-b]pyridin-3-amine played an essential role in the anti-proliferative activities. Especially, compound 15c displayed the strongest anti-proliferation against MCF-7 cells with IC50 value of 0.067 ± 0.003 µM, and high selectivity over the normal human embryonic lung WI-38 cells with IC50 value of 23.41 ± 1.53 µM. Further mechanistic studies revealed that 15c showed strong anti-tubulin polymerization activity, changed the morphology of tubulin, and arrested the cell cycle at the G2/M transition in MCF-7 cells. Molecular docking analysis suggested that 15c well occupied the colchicine-binding pocket of tubulin. Additionally, 15c demonstrated anti-angiogenic activities with blocking the migration, invasion and tube formation, disrupting the newly formed tube, and regulating both MMP-9 and TIMP-1 in HUVEC cells. In summary, our results highlight that compound 15c is a potential antitumor compound that are worthy of further development.


Subject(s)
Amines/pharmacology , Antineoplastic Agents/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Amines/chemical synthesis , Amines/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Polymerization/drug effects , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Swine , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
14.
Bioorg Chem ; 105: 104427, 2020 12.
Article in English | MEDLINE | ID: mdl-33161248

ABSTRACT

Antioxidants have been the subject of intense research interest due to their numerous health benefits. In this work, a series of new conjugates of hydroxytyrosol and coumarin were synthesized and evaluated for their free radical scavenging, toxicity and antioxidant mechanism in vitro. The all target compounds 14a-t exhibited better radical scavenging activity than BHT, hydroxytyrosol, and coumarin in both DPPH radical and ABTS+ radical cation scavenging assays. The structure-activity relationships study indicated that the number and position of hydroxyl groups on the coumarin ring were vital to a good antioxidant capacity. Furthermore, the most promising compound 14q showed less toxicity in hemolysis assay and weaker antiproliferative effects than BHT against normal WI-38 and GES cells, and enhanced viability of H2O2-induced HepG2 cells. Additionally, 14q decreased the apoptotic percentage of HepG2 cells, reduced the ROS produce and LDH release, and improved GSH and SOD levels in H2O2-treated HepG2 cells. Lastly, 14q exhibited more stability than hydroxytyrosol in methanol solution. These results revealed that conjugations of hydroxytyrosol and coumarin show better antioxidant capacity, and are the efficacious approach to finding novel potential antioxidant.


Subject(s)
Antioxidants/pharmacology , Coumarins/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Antioxidants/chemical synthesis , Antioxidants/chemistry , Apoptosis/drug effects , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Cell Line , Cell Survival/drug effects , Coumarins/chemistry , Dose-Response Relationship, Drug , Humans , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Molecular Structure , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacology , Picrates/antagonists & inhibitors , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Sulfonic Acids/antagonists & inhibitors
15.
Bioorg Med Chem Lett ; 30(23): 127556, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32941989

ABSTRACT

A series of novel 4-substituted phthalazinones as Aurora B kinase inhibitors was synthesized and evaluated the anti-proliferative activities against A549, HCT116, MCF-7 and HepG2 cells. 1-(4-(2-((4-Oxo-3,4-dihydrophthalazin-1-yl)amino)ethyl) phenyl)-3-(3-(trifluoromethyl)phenyl)urea (17b) exhibited the most potent anti-proliferative activity against HCT116 cells with IC50 value of 4.35 ± 1.21 µM, as well as the moderate Aurora B inhibitory activity with the IC50 value of 142 nM. Furthermore, 17b inhibited the phosphorylation of Aurora B on Thr232, leading to cell cycle arrest in the G2/M phase by down-regulating the expression of CyclinB1 and Cdc2 proteins, and apoptosis by up-regulating the expression of BAD and Bax proteins in HCT116 cells. In addition, a docking study revealed that 17b could form key hydrogen bonds with Ala173, Glu171 and Glu177 in Aurora B. All the results reveal that 17b is worthy of further development as an Aurora B kinase inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase B/antagonists & inhibitors , Phthalazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Aurora Kinase B/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Assays , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Molecular Docking Simulation , Molecular Structure , Phosphorylation/drug effects , Phthalazines/chemical synthesis , Phthalazines/metabolism , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship
16.
Eur J Med Chem ; 208: 112780, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32883643

ABSTRACT

Bromodomain protein 4 (BRD4) plays a crucial role in transcriptional regulation and is considered to be a viable drug target for cancer treatment. Herein, we designed and synthesized a series of indole-2-one derivatives through scaffold hopping drug design. Most of the compounds showed potent BRD4 inhibitory activities and anti-proliferation activities in cancer cell lines. Especially, compound 12j exhibited excellent BRD4 inhibitory activities (BD1 IC50 = 19 nM, BD2 IC50 = 28 nM) and anti-proliferation potency with IC50 values of 4.75 µM and 1.35 µM in HT-29 and HL-60 cells, respectively. Additionally, docking studies showed that the hydrophobic pocket next to KAc region and WPF shelf were critical to the activity of the compound. Compound 12j could arrest the cell-cycle progression of HT-29 cells into the G1 phase and reduce the expression of c-Myc. Moreover, compound 12j exhibited favorable oral pharmacokinetic properties. All the results demonstrated that compound 12j was a potent BRD4 inhibitor and had merely potential for colon cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Indoles/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Indoles/chemical synthesis , Indoles/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Proto-Oncogene Proteins c-myc/metabolism , Rats, Wistar , Structure-Activity Relationship , Transcription Factors/metabolism
17.
J Hypertens ; 38(11): 2270-2278, 2020 11.
Article in English | MEDLINE | ID: mdl-32649630

ABSTRACT

OBJECTIVES: Cardiovascular dysautonomia can be present at early, late and even prodromal stages of Parkinson's disease. This study aimed to describe the characteristics of 24-h ambulatory blood pressure (BP) monitoring and investigate the frequency of cardiovascular dysautonomia in Parkinson's disease without an abnormal BP history. METHODS: Parkinson's disease patients without history of abnormal BP were consecutively enrolled from three Chinese centres, on whom office BP measurement, neurological evaluations and 24-h ambulatory BP monitoring were performed. RESULTS: Totally, 101 Parkinson's disease patients (42.6% women) with an average age of 66.6 ±â€Š8.2 years were included in our cohort, and data analysis revealed that 26 (25.74%) patients suffered from orthostatic hypotension, among whom 18 (69.23%) were symptomatic. Patients with orthostatic hypotension compared with those without had significantly higher nocturnal SBP level, and more severe nonmotor symptoms, autonomic dysfunction and cognitive impairment. Further, 54 out of 101 (53.47%) individuals had a reverse dipping pattern in SBP and/or DBP. Reverse dippers had more cases of orthostatic hypotension (P < 0.001), and more severe nonmotor symptoms. SBP dipping ratio of less than -2.98% generated 76.9% of sensitivity, 69.3% of specificity, 46.5% of positive predictive value (PPV), 89.7% of negative predictive value (NPV) and 77.4% of accuracy, while diastolic dipping ratio of less than -1.80% generated 76.9% of sensitivity, 70.7% specificity, 47.6% of PPV, 89.8% of NPV and 77.8% of accuracy for suspecting orthostatic hypotension. CONCLUSION: Orthostatic hypotension can occur in one-fourth Parkinson's disease patients without abnormal BP history, and reverse dipping was present in more than half of patients with Parkinson's disease. Reverse dipping pattern was helpful to suspect orthostatic hypotension.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Blood Pressure/physiology , Parkinson Disease , Aged , China , Cohort Studies , Female , Humans , Hypotension, Orthostatic/complications , Hypotension, Orthostatic/diagnosis , Hypotension, Orthostatic/physiopathology , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/epidemiology , Parkinson Disease/physiopathology
18.
Org Lett ; 22(14): 5314-5319, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32589432

ABSTRACT

A general γ-C(sp2)-H iodination method directed by an aliphatic keto group has been developed under transition-metal-free conditions for the first time, generating iodoarenes in good to excellent yields with excellent site selectivity. This protocol features a wide range of aryl-substituted ketones, short reaction times, mild reaction conditions, and scalable synthetic procedures. A possible reaction mechanism was also proposed based on several control experiments.

19.
Bioorg Med Chem ; 28(5): 115351, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32035750

ABSTRACT

Serine/threonine protein kinases Aurora A, B, and C play essential roles in cell mitosis and cytokinesis, and a number of Aurora kinase inhibitors have been evaluated in the clinic. Herein we report the synthesis and their antiproliferation of 3,5-disubstituted-2-aminopyrazines as kinases inhibitors. Amongst, 4-((3-amino-6- (3,5-dimethylisoxazol-4-yl)pyrazin-2-yl)oxy)-N-(3-chlorophenyl) benzamide (12Aj) exhibited the strongest antiproliferative activities against U38, HeLa, HepG2 and LoVo cells with IC50 values were 11.5 ± 3.2, 1.34 ± 0.23, 7.30 ± 1.56 and 1.64 ± 0.48 µM, as well as inhibited Aurora A and B with the IC50 values were 90 and 152 nM, respectively. Molecular docking studies indicated that 12Aj appeared to form stable hydrogen bonds with either Aurora A or Aurora B. Furthermore, 12Aj arrested HeLa cell cycle in G2/M phase by regulating protein levels of cyclinB1 and cdc2. In addition, the bioinformatics prediction further revealed that 12Aj possessed good drug likeness using SwissADME. These results suggested that 12Aj was worthy of future development of potent anticancer agents as pan-Aurora kinases.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinase A/metabolism , Aurora Kinase B/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 30(3): 126885, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31862411

ABSTRACT

In order to explore novel Aurora kinase inhibitors, a series of novel 2,4-disubstituted pyrimidines were designed, synthesized and evaluated their in vitro anti-proliferative activities against a panel of cancerous cell lines (A549, HCT-116 and MCF-7). Among them, compound 12a showed the moderate to high anti-proliferative activities against A549 (IC50 = 12.05 ± 0.45 µM), HCT-116 (IC50 = 1.31 ± 0.41 µM) and MCF-7 (IC50 = 20.53 ± 6.13 µM) cells, as well as the Aurora A and Aurora B inhibitory activities with the IC50 values of 309 nM and 293 nM, respectively. Furthermore, compound 12a induced apoptosis by upregulated the pro-apoptotic proteins Bax and decreased the anti-apoptotic protein Bcl-xl in HCT-116 cells. Moreover, the molecular docking study showed that compound 12a had good binding modes with Aurora A and Aurora B and the bioinformatics prediction discovered that compound 12a exhibited good drug likeness using SwissADME. Taken together, these results indicated that 12a may be a potential anticancer compound that was worthy of further development as Aurora kinase inhibitor.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Apoptosis/drug effects , Aurora Kinase A/metabolism , Aurora Kinase B/metabolism , Binding Sites , Cell Line, Tumor , Drug Design , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Pyrimidines/metabolism , Pyrimidines/pharmacology , Structure-Activity Relationship , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...