Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 4(15): 3172-3181, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36132823

ABSTRACT

Rapid, reliable, and sensitive colorimetric detection has been regarded as a highly potential technique for visually monitoring the cation ions. Yet, insight into detection kinetics and quantitative analysis for colorimetric sensing of sodium ions has rarely been revealed. Herein, in-depth kinetic investigations of colorimetric detection using surface-modified Au-nanoparticle (AuNP) probes were performed for interpreting the correlation of salt concentration, reaction duration, and light absorbance. To envision these undisclosed issues, modification of AuNP surfaces with ascorbic acid was found to be highly essential for boosting the detection sensitivity due to adjusting the zeta potential of AuNP colloids towards a slightly positive value. Next, modeling the light absorbance of AuNPs under various aggregation circumstances was employed, which visually elucidated the color change so that it was visible to the naked eye, due to the intense field localization on the edges of aggregated AuNPs. In addition, the involved activation energy of AuNP aggregation was found to follow the first-order Arrhenius formula, with the extracted value of 22.5 kJ mol-1. Finally, quantitative visualization of colorimetric Na+ ion sensing was realized, and the experimental relation was obtained for explicitly determining the unknown concentration of Na+ ions in a visual manner.

2.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35683679

ABSTRACT

Light/matter interaction of low-dimensional silicon (Si) strongly correlated with its geometrical features, which resulted in being highly critical for the practical development of Si-based photovoltaic applications. Yet, orientation modulation together with apt control over the size and spacing of aligned Si nanowire (SiNW) arrays remained rather challenging. Here, we demonstrated that the transition of formed SiNWs with controlled diameters and spacing from the crystallographically preferred <100> to <110> orientation was realized through the facile adjustment of etchant compositions. The underlying mechanism was found to correlate with the competing reactions between the formation and removal of oxide at Ag/Si interfaces that could be readily tailored through the concentration ratio of HF to H2O2. By employing inclined SiNWs for the construction of hybrid solar cells, the improved cell performances compared with conventional vertical-SiNW-based hybrid cells were demonstrated, showing the conversion efficiency of 12.23%, approximately 1.12 times higher than that of vertical-SiNW-based hybrid solar cells. These were numerically and experimentally interpreted by the involvement of excellent light-trapping effects covering the wide-angle light illuminations of inclined SiNWs, which paved the potential design for next-generation optoelectronic devices.

3.
J Hazard Mater ; 421: 126674, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34315025

ABSTRACT

Photocatalytic degradation of organic dyes has been considered one of the promising solutions that enabled to effectively treat the demanding pollutants in wastewater. Yet, insight into the photocatalytic process under both illumination and dark conditions were hitherto missing. Herein, by virtue of incorporating the core-shell Au@CuxS nanoparticles to the ZnO nanowalls synthesized via all-solution synthesis, the intriguing heterostructures allowed to trigger the extraordinary capability of dye degradation either under light irradiance or dark environment. It was found that the coexistence of bi-constituted Cu2S/CuS shells on Au nanoparticles obtained with turning the concentrations of sulfurization acted as the decisive role on day-night active degradation performance, where the degradation efficiency was more than 8.3 times beyond sole ZnO sheets. The mediation of remarkable visible-light absorption and efficient charge separation due to band alignment of heterojunctions were responsible for the improved photodegradation efficiency under visible illuminations. Moreover, at dark environment, the involving peroxidase-like activity of CuxS shells with the mediation of Au nanoparticles facilitated the catalytic formation of hydroxyl radicals, manifesting the oxidative degradation of MB dye. Such all-day active photocatalysts further displayed the capability for the recycling treatment of MB dye, which offered the pathways to potentially treat the organic wastewater.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Catalysis , Gold , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...