Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Polymers (Basel) ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891439

ABSTRACT

Inulin, a natural polysaccharide, has emerged as a promising precursor for the preparation of hydrogels due to its biocompatibility, biodegradability, and structural versatility. This review provides a comprehensive overview of the recent progress in the preparation, characterization, and diverse applications of inulin-based hydrogels. Different synthesis strategies, including physical methods (thermal induction and non-thermal induction), chemical methods (free-radical polymerization and chemical crosslinking), and enzymatic approaches, are discussed in detail. The unique properties of inulin-based hydrogels, such as stimuli-responsiveness, antibacterial activity, and their potential as fat replacers, are highlighted. Special emphasis is given to their promising applications in drug delivery systems, especially for colon-targeted delivery, due to the selective degradation of inulin via colonic microflora. The ability to incorporate both hydrophilic and hydrophobic drugs further expands their therapeutic potential. In addition, the applications of inulin-based hydrogels in responsive materials, the food industry, wound dressings, and tissue engineering are discussed. While significant progress has been achieved, challenges and prospects in optimizing synthesis, improving mechanical properties, and exploring new functionalities are discussed. Overall, this review highlights the remarkable properties of inulin-based hydrogels as a promising class of biomaterials with immense potential in the biomedical, pharmaceutical, and materials science fields.

2.
J Fungi (Basel) ; 10(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38535199

ABSTRACT

The fungus genus Xylaria is an important source of drug discoveries in scientific fields and in the pharmaceutical industry due to its potential to produce a variety of structured novel and bioactive secondary metabolites. This review prioritizes the structures of the secondary metabolites of Xylaria spp. from 1994 to January 2024 and their relevant biological activities. A total of 445 new compounds, including terpenoids, nitrogen-containing compounds, polyketides, lactones, and other classes, are presented in this review. Remarkably, among these compounds, 177 compounds show various biological activities, including cytotoxic, antimicrobial, anti-inflammatory, antifungal, immunosuppressive, and enzyme-inhibitory activities. This paper will guide further investigations into the structures of novel and potent active natural products derived from Xylaria and their potential contributions to the future development of new natural drug products in the agricultural and medicinal fields.

3.
J Asian Nat Prod Res ; 24(7): 679-684, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34292113

ABSTRACT

A new isocoumarin, penicimarin N (1), along with five known compounds (2-6), were isolated from the mangrove-derived fungus Penicillium sp. TGM112. The structure of 1 was elucidated on the basis of extensive spectroscopic data analysis, and the absolute configuration of 1 was determined by comparison of their circular dichroism (CD) spectra with the literature. The structures of known compounds were determined by comparison with the literature data. All the isolated compounds were examined for their antioxidant and α-glucosidase activities. Compound 1 showed strong antioxidant activity with the IC50 value of 1.0 mM, and 1 also exhibited moderate inhibitory activity against α-glucosidase with the IC50 value of 620 µM.


Subject(s)
Isocoumarins , Penicillium , Fungi/metabolism , Molecular Structure , Penicillium/chemistry , alpha-Glucosidases/metabolism
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(4): 1000-4, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-23841416

ABSTRACT

Cross flow ultrafiltration systems and three dimensional fluorescence spectrum were used to investigate the fluorescence characterization of different molecular weight dissolved organic matter in water of wet season and dry season from Yangtze River estuary, in order to find out the sources and influencing factors. The results showed that four types of dissolved organic carbon (DOM) fluorescence peaks were observed in the water: humic-like fluorescence peak A and C, and protein-like fluorescence peak B and D. Fluorescent substances mainly existed in the truly dissolved organic matter (UOM, < 1 kDa), secondly in low and medium molecular weight of colloidal organic matter (1-500 kDa). Protein of DOM in water mainly originated from anthropogenic sources, then from autochthonous sources. Compared to protein, humic acid of DOM in wet season was both terrigenous and autochthonous sources, while in dry season mainly from terrestrial organic matter. In addition, humic acid in UOM was mainly derived from biological decomposition, however, in colloidal organic matter (COM) came from terrestrial organic matter and was affected by resuspension effects. There was linear correlation between fluorescence intensity and environmental parameters. It was revealed that the complex environmental conditions would influence the fluorescent substance of DOM in water from Yangtze River estuary.

SELECTION OF CITATIONS
SEARCH DETAIL
...