Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
BMC Genomics ; 22(1): 852, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34819020

ABSTRACT

BACKGROUND: Idiopathic membranous nephropathy (IMN) is a cause of nephrotic syndrome that is increasing in incidence but has unclear pathogenesis. Urinary peptidomics is a promising technology for elucidating molecular mechanisms underlying diseases. Dysregulation of the proteolytic system is implicated in various diseases. Here, we aimed to conduct urinary peptidomics to identify IMN-related proteases. RESULTS: Peptide fingerprints indicated differences in naturally produced urinary peptide components among 20 healthy individuals, 22 patients with IMN, and 15 patients with other kidney diseases. In total, 1,080 peptide-matched proteins were identified, 279 proteins differentially expressed in the urine of IMN patients were screened, and 32 proteases were predicted; 55 of the matched proteins were also differentially expressed in the kidney tissues of IMN patients, and these were mainly involved in the regulation of proteasome-, lysosome-, and actin cytoskeleton-related signaling pathways. The 32 predicted proteases showed abnormal expression in the glomeruli of IMN patients based on Gene Expression Omnibus databases. Western blot revealed abnormal expression of calpain, matrix metalloproteinase 14, and cathepsin S in kidney tissues of patients with IMN. CONCLUSIONS: This work shown the calpain/matrix metalloproteinase/cathepsin axis might be dysregulated in IMN. Our study is the first to systematically explore the role of proteases in IMN by urinary peptidomics, which are expected to facilitate discovery of better biomarkers for IMN.


Subject(s)
Glomerulonephritis, Membranous , Biomarkers , Glomerulonephritis, Membranous/genetics , Humans , Peptide Hydrolases
2.
J Proteome Res ; 19(4): 1502-1512, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32168457

ABSTRACT

Glomerular diseases, which are currently diagnosed using an invasive renal biopsy, encompass numerous disease subtypes that often display similar clinical manifestations even though they have different therapeutic regimes. Therefore, a noninvasive assay is needed to classify and guide the treatment of glomerular diseases. Here, we develop and apply a high-throughput and quantitative microarray platform to characterize the immunoglobulin proteome in the serum from 419 healthy and diseased patients. The immunoglobulin proteome-clinical variable correlation network revealed novel pathological mechanisms of glomerular diseases. Furthermore, an immunoglobulin proteome-multivariate normal distribution (IP-MiND) mathematical model based on the correlation network classified healthy volunteers and patients with idiopathic membranous nephropathy with an average recall of 48% (23-80%) in the discovery cohort and 64% (63-65%) in an independent validation cohort. Our results demonstrate the translational utility of our microarray platform to glomerular diseases as well as its clinical potential in characterizing other human diseases.


Subject(s)
Immunoglobulins , Proteome , Cohort Studies , Humans , Proteomics
3.
RSC Adv ; 8(52): 29526-29534, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-35547329

ABSTRACT

Synthetic scaffolds with multifunctional properties, including angiogenesis and osteogenesis capacities, play an essential role in accelerating bone regeneration. In this study, various concentrations of Cu/Zn ions were incorporated into biphasic calcium phosphate (BCP) scaffolds, and then growth differentiation factor-5 (GDF-5)-loaded poly(lactide-co-glycolide) (PLGA) microspheres were attached onto the ion-doped scaffold. The results demonstrated that with increasing concentration of dopants, the scaffold surface gradually changed from smooth grain crystalline to rough microparticles, and further to a nanoflake film. Additionally, the mass ratio of ß-tricalcium phosphate/hydroxyapatite increased with the dopant concentration. Furthermore, GDF-5-loaded PLGA microspheres attached onto the BCP scaffold surface exhibited a sustained release. In vitro co-culture of bone mesenchymal stem cells and vascular endothelial cells showed that the addition of Cu/Zn ions and GDF-5 in the BCP scaffold not only accelerated cell proliferation, but also promoted cell differentiation by enhancing the alkaline phosphatase activity and bone-related gene expression. Moreover, the vascular endothelial growth factor secretion level increased with the dopant concentration, and attained a maximum when GDF-5 was added into the ions-doped scaffold. These findings indicated that BCP scaffold co-doped with Cu/Zn ions exhibited a combined effect of both metal ions, including angiogenic and osteogenic capacities. Moreover, GDF-5 addition further enhanced both the angiogenic and osteogenic capacities of the BCP scaffold. The Cu/Zn co-incorporated BCP scaffold-derived GDF-5 sustained release system produced multifunctional scaffolds with improved angiogenesis and osteogenesis properties.

4.
RSC Adv ; 8(68): 39013-39021, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-35558279

ABSTRACT

Tissue-engineered intervertebral discs (IVDs) have been proposed as a useful therapeutic strategy for the treatment of intervertebral disc degeneration (IDD). However, most studies have focused on fabrication and assessment of tissue-engineered IVDs in small animal models and the mechanical properties of the scaffolds are far below those of native human IVDs. The aim of this study was to produce a novel tissue-engineered IVD for IDD regeneration in the porcine lumbar spine. Firstly, a novel whole tissue-engineered IVD scaffold was fabricated using chitosan hydrogel to simulate the central nucleus pulposus (NP) structure, surrounded with a poly(butylene succinate-co-terephthalate) (PBST) fiber film for inner annulus fibrosus (IAF). And, a poly(ether ether ketone) (PEEK) ring was used to stimulate the outer annulus fibrosus (OAF). Then, the scaffolds were seeded with IVD cells and the cell-scaffold hybrids were transplanted into the porcine damaged spine and harvested at 4 and 8 weeks. In vitro cell experiments showed that IVD cells distributed and grew well in the scaffolds including porous hydrogel and PBST fibers. After implantation into pigs, radiographic and MRI images indicated that the tissue-engineered IVD construct could preserve the disc height in the case of discectomy as the normal disc height and maintain a large extracellular matrix and water content in the NP. Combined with the histological and gene expression results, it was concluded that the tissue-engineered IVD had similar morphological and histological structure to the natural IVD. Moreover, after implantation for 8 weeks, the tissue-engineered IVD showed a good compressive stress and elastic moduli, approaching those of natural porcine IVD. Therefore, the prepared tissue-engineered IVD construct had similar morphological and biofunctional properties to the native tissue. Also, the tissue-engineered IVD construct with excellent biocompatibility and mechanical properties provides a promising candidate for human IDD regeneration.

5.
J Org Chem ; 82(11): 5926-5931, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28489380

ABSTRACT

Electron acceptors based on perylene monoimide (PMI) are rare due to the synthetic challenge. Herein, starting from commercially available perylene dianhydride, brominated perylene monoimide (PMI-Br) with short side chains and good solubility was efficiently synthesized in a high overall yield of 71%. With PMI-Br as the intermediate, acceptor-donor-acceptor type electron acceptors with low-lying LUMO energy levels and strong visible absorption were successfully obtained. The nonfullerene bulk heterojunction solar cells based on these acceptors were fabricated with the highest PCE of 1.3%.

6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 29(5): 876-9, 918, 2012 Oct.
Article in Chinese | MEDLINE | ID: mdl-23198426

ABSTRACT

This paper proposes a new method of non-contact pulse measurement by analyzing a clip of human facial video. The method is based on photo plethysmography (PPG) and independent component analysis (ICA) model. A clip of color facial video shot under normal lighting condition is firstly discomposed into RGB channel sequences. Secondly, by applying ICA to the 3 channel sequences, 3 new independent signals are obtained, among which one signal is close to human pulse wave. Thus the pulse can be measured. In this paper, the principles of PPG and ICA are briefly described and the measurement framework is proposed. The experimental results showed that this novel approach was reasonable and feasible.


Subject(s)
Facies , Photoplethysmography/methods , Principal Component Analysis/methods , Pulse , Video Recording/methods , Algorithms , Analysis of Variance , Humans , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...