Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1390461, 2024.
Article in English | MEDLINE | ID: mdl-38863548

ABSTRACT

Introduction: The WD40 gene family, prevalent in eukaryotes, assumes diverse roles in cellular processes. Spartina alterniflora, a halophyte with exceptional salt tolerance, flood tolerance, reproduction, and diffusion ability, offers great potential for industrial applications and crop breeding analysis. The exploration of growth and development-related genes in this species offers immense potential for enhancing crop yield and environmental adaptability, particularly in industrialized plantations. However, the understanding of their role in regulating plant growth and development remains limited. Methods: In this study, we conducted a comprehensive analysis of WD40 genes in S. alterniflora at the whole-genome level, delving into their characteristics such as physicochemical properties, phylogenetic relationships, gene architecture, and expression patterns. Additionally, we cloned the TTG1 gene, a gene in plant growth and development across diverse species. Results: We identified a total of 582 WD40 proteins in the S. alterniflora genome, exhibiting an uneven distribution across chromosomes. Through phylogenetic analysis, we categorized the 582 SaWD40 proteins into 12 distinct clades. Examining the duplication patterns of SaWD40 genes, we observed a predominant role of segmental duplication in their expansion. A substantial proportion of SaWD40 gene duplication pairs underwent purifying selection through evolution. To explore the functional aspects, we selected SaTTG1, a homolog of Arabidopsis TTG1, for overexpression in Arabidopsis. Subcellular localization analysis revealed that the SaTTG1 protein localized in the nucleus and plasma membrane, exhibiting transcriptional activation in yeast cells. The overexpression of SaTTG1 in Arabidopsis resulted in early flowering and increased seed size. Discussion: These outcomes significantly contribute to our understanding of WD40 gene functions in halophyte species. The findings not only serve as a valuable foundation for further investigations into WD40 genes in halophyte but also offer insights into the molecular mechanisms governing plant development, offering potential avenues in molecular breeding.

2.
Hortic Res ; 11(5): uhae082, 2024 May.
Article in English | MEDLINE | ID: mdl-38766535

ABSTRACT

Salt stress poses a significant threat to global cereal crop production, emphasizing the need for a comprehensive understanding of salt tolerance mechanisms. Accurate functional annotations of differentially expressed genes are crucial for gaining insights into the salt tolerance mechanism. The challenge of predicting gene functions in under-studied species, especially when excluding infrequent GO terms, persists. Therefore, we proposed the use of NetGO 3.0, a machine learning-based annotation method that does not rely on homology information between species, to predict the functions of differentially expressed genes under salt stress. Spartina alterniflora, a halophyte with salt glands, exhibits remarkable salt tolerance, making it an excellent candidate for in-depth transcriptomic analysis. However, current research on the S. alterniflora transcriptome under salt stress is limited. In this study we used S. alterniflora as an example to investigate its transcriptional responses to various salt concentrations, with a focus on understanding its salt tolerance mechanisms. Transcriptomic analysis revealed substantial changes impacting key pathways, such as gene transcription, ion transport, and ROS metabolism. Notably, we identified a member of the SWEET gene family in S. alterniflora, SA_12G129900.m1, showing convergent selection with the rice ortholog SWEET15. Additionally, our genome-wide analyses explored alternative splicing responses to salt stress, providing insights into the parallel functions of alternative splicing and transcriptional regulation in enhancing salt tolerance in S. alterniflora. Surprisingly, there was minimal overlap between differentially expressed and differentially spliced genes following salt exposure. This innovative approach, combining transcriptomic analysis with machine learning-based annotation, avoids the reliance on homology information and facilitates the discovery of unknown gene functions, and is applicable across all sequenced species.

3.
Article in English | MEDLINE | ID: mdl-38607201

ABSTRACT

Context: Laparoscopic gastrectomy (LG) provides advantages such as rapid postoperative recovery and little trauma, but postoperative complications are still unavoidable. Detecting serious complications after LG surgery is still a difficult problem for digestive surgeons. Objective: The study intended to evaluate the clinical significance of the C-reactive protein (CRP) ratio in predicting postoperative complications after LG. Design: The research team performed a retrospective analysis. Setting: The study took place at Department of General Surgery, Qingdao Clinical Medical College, Nanjing Medical University, Qingdao, China. Participants: Participants were 128 patients with gastric cancer, confirmed through histopathology, who underwent an LG in the general surgery department of the hospital between January 2015 and January 2020. Groups: Based on the optimal cut-off value of the CRP ratio, the research team divided participants into two groups, with 30 participants with a CRP ratio of >2.0 in the high CRP-value group and 98 with a CRP ratio of ≤2.0 in the low CRP-value group. Also, based on the incidence of complications, the team divided participants into a second set of groups, with 30 participants in a severe complications group and 98 in a nonsevere complications group. Outcome Measures: The research team: (1) determined participants' CRP ratios and compared the clinicopathological characteristics of the high and low CRP-value groups, (2) identified the postoperative complications that participants experienced and compared the clinicopathological characteristics of the severe and nonsevere complications groups, (3) analyzed the predictive value of the CRP levels for early complications after LG using a receiver operating characteristic (ROC) curve, and (4) performed a multivariate regression analysis to determine the risk factors for serious complications. Results: No significant differences existed between the two complication groups in CRP value, white-blood-cell (WBC) count, and WBC count ratio on days 1 and 3 after surgery (P > .05), but the severe complications group had a significantly higher CRP ratio than the nonsevere complications group did (P < .001). The ROC curve showed that the sensitivity, specificity, positive predictive value, and negative predictive value of CRP in predicting severe complications after LG were 67.19%, 84.38%, 73.28%, and 83.27%, respectively. Thank you for your suggestion, we have added tables for these data. Compared to the low CRP-ratio group, the high CRP-value group had: (1) a significantly higher body mass index (BMI), with p=0.031; (2) was significantly more likely to have preoperative underlying diseases (P = .011); (3) was significantly more likely to have had a total gastrectomy (P = .006); (4) was significantly more likely to be in the T3+T4 stage (P = .034); (5) was significantly more likely to be in the tumor, node, metastasis (TNM) stage II or III (P = .010); and (6) was significantly more likely to have had postoperative severe complications (P < .001). The multivariate analysis found that the independent risk factors for severe complications after LG included: (1) preoperative underlying diseases-OR=3.624, 95% CI: (1.191, 11.206) and P = .023; (2) an advanced TNM stage [OR=9.037, 95% CI: (1.729, 47.226), P = .009; and (3) a CRP ratio >2.2 [OR=20.473, 95% CI: (7.948, 52.737), P < .001. Conclusions: The CRP ratio after LG can effectively predict postoperative complications that need treatment, and when the ratio is more than 2.2, digestive surgeons should pay attention to the possibility of serious complications.

4.
Ergonomics ; : 1-22, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651950

ABSTRACT

Mental load is a major cause of human-induced accidents. In this study, an explosive impact sensitivity experiment was used to induce mental load. A combination of subjective questionnaires and objective prospective time-distance tests were used to judge whether subjects experienced mental load. Four indicators, namely, ß, γ, mean pupil diameter, and fixation time were selected by statistical analysis and PCA for the construction of a mental load assessment model. The study found that the occipital lobe was the most sensitive to mental load, especially ß and γ bands. Lastly, it was found that subjects showed different degrees of mental load for the same mental load induction task. The results of the study are applicable to the evaluation and monitoring of the mental characteristics of workers and provide a scientific basis for adjusting the mental load of workers over time to reduce the rate of accidents and enhance production efficiency.


Mental load is the main cause of human-induced accidents. This study used an explosive impact sensitivity experiment to induce mental load in subjects. We found that the mean pupil diameter and fixation time, as well as the beta and gamma bands in the occipital lobe were most sensitive to mental load.

5.
Plant Biotechnol J ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685729

ABSTRACT

Spartina alterniflora is an exo-recretohalophyte Poaceae species that is able to grow well in seashore, but the genomic basis underlying its adaptation to salt tolerance remains unknown. Here, we report a high-quality, chromosome-level genome assembly of S. alterniflora constructed through PacBio HiFi sequencing, combined with high-throughput chromosome conformation capture (Hi-C) technology and Illumina-based transcriptomic analyses. The final 1.58 Gb genome assembly has a contig N50 size of 46.74 Mb. Phylogenetic analysis suggests that S. alterniflora diverged from Zoysia japonica approximately 21.72 million years ago (MYA). Moreover, whole-genome duplication (WGD) events in S. alterniflora appear to have expanded gene families and transcription factors relevant to salt tolerance and adaptation to saline environments. Comparative genomics analyses identified numerous species-specific genes, significantly expanded genes and positively selected genes that are enriched for 'ion transport' and 'response to salt stress'. RNA-seq analysis identified several ion transporter genes including the high-affinity K+ transporters (HKTs), SaHKT1;2, SaHKT1;3 and SaHKT1;8, and high copy number of Salt Overly Sensitive (SOS) up-regulated under high salt conditions, and the overexpression of SaHKT2;4 in Arabidopsis thaliana conferred salt tolerance to the plant, suggesting specialized roles for S. alterniflora to adapt to saline environments. Integrated metabolomics and transcriptomics analyses revealed that salt stress activate glutathione metabolism, with differential expressions of several genes such as γ-ECS, GSH-S, GPX, GST and PCS in the glutathione metabolism. This study suggests several adaptive mechanisms that could contribute our understanding of evolutional basis of the halophyte.

6.
aBIOTECH ; 4(4): 291-302, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38106430

ABSTRACT

With the increasing number of sequenced species, phylogenetic profiling (PP) has become a powerful method to predict functional genes based on co-evolutionary information. However, its potential in plant genomics has not yet been fully explored. In this context, we combined the power of machine learning and PP to identify salt stress-related genes in a halophytic grass, Spartina alterniflora, using evolutionary information generated from 365 plant species. Our results showed that the genes highly co-evolved with known salt stress-related genes are enriched in biological processes of ion transport, detoxification and metabolic pathways. For ion transport, five identified genes coding two sodium and three potassium transporters were validated to be able to uptake Na+. In addition, we identified two orthologs of trichome-related AtR3-MYB genes, SaCPC1 and SaCPC2, which may be involved in salinity responses. Genes co-evolved with SaCPCs were enriched in functions related to the circadian rhythm and abiotic stress responses. Overall, this work demonstrates the feasibility of mining salt stress-related genes using evolutionary information, highlighting the potential of PP as a valuable tool for plant functional genomics. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00125-5.

7.
Front Plant Sci ; 14: 1228213, 2023.
Article in English | MEDLINE | ID: mdl-37662159

ABSTRACT

Global warming leads to frequent extreme weather, especially the extreme heat events, which threating the safety of maize production. Here we selected a pair of maize inbred lines, PF5411-1 and LH150, with significant differences in heat tolerance at kernel development stage. The two maize inbred lines were treated with heat stress at kernel development stage. Compared with the control groups, transcriptomic analysis identified 770 common up- and down-regulated genes between PF5411-1 and LH150 under heat stress conditions, and 41 putative TFs were predicted. Based on the interaction term of the two-factorial design, we also identified 6,744 differentially regulated genes between LH150 and PF5411-1, 111 common up-regulated and 141 common down-regulated genes were overlapped with the differentially regulated genes, respectively. Combined with proteins and metabolites data, several key pathways including seven differentially regulated genes were highly correlated with the heat tolerance of maize kernels. The first is the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway ko04141: protein processing in endoplasmic reticulum, four small heat shock protein (sHSP) genes were enriched in this pathway, participating with the process of ER-associated degradation (ERAD). The second one is the myricetin biosynthesis pathway, a differentially regulated protein, flavonoid 3',5'-hydroxylase [EC:1.14.14.81], catalyzed the synthesis of myricetin. The third one is the raffinose metabolic pathway, one differentially regulated gene encoded the raffinose synthase controlled the synthesis of raffinose, high level of raffinose enhances the heat tolerance of maize kernels. And the last one is the ethylene signaling pathway. Taken together, our work identifies many genes responded to heat stress in maize kernels, and finds out seven genes and four pathways highly correlated with heat tolerance of maize kernels.

8.
Plant J ; 116(3): 690-705, 2023 11.
Article in English | MEDLINE | ID: mdl-37494542

ABSTRACT

Spartina alterniflora is a halophyte that can survive in high-salinity environments, and it is phylogenetically close to important cereal crops, such as maize and rice. It is of scientific interest to understand why S. alterniflora can live under such extremely stressful conditions. The molecular mechanism underlying its high-saline tolerance is still largely unknown. Here we investigated the possibility that high-affinity K+ transporters (HKTs), which function in salt tolerance and maintenance of ion homeostasis in plants, are responsible for salt tolerance in S. alterniflora. To overcome the imprecision and unstable of the gene screening method caused by the conventional sequence alignment, we used a deep learning method, DeepGOPlus, to automatically extract sequence and protein characteristics from our newly assemble S. alterniflora genome to identify SaHKTs. Results showed that a total of 16 HKT genes were identified. The number of S. alterniflora HKTs (SaHKTs) is larger than that in all other investigated plant species except wheat. Phylogenetically related SaHKT members had similar gene structures, conserved protein domains and cis-elements. Expression profiling showed that most SaHKT genes are expressed in specific tissues and are differentially expressed under salt stress. Yeast complementation expression analysis showed that type I members SaHKT1;2, SaHKT1;3 and SaHKT1;8 and type II members SaHKT2;1, SaHKT2;3 and SaHKT2;4 had low-affinity K+ uptake ability and that type II members showed stronger K+ affinity than rice and Arabidopsis HKTs, as well as most SaHKTs showed preference for Na+ transport. We believe the deep learning-based methods are powerful approaches to uncovering new functional genes, and the SaHKT genes identified are important resources for breeding new varieties of salt-tolerant crops.


Subject(s)
Deep Learning , Oryza , Genes, Plant , Plant Breeding , Poaceae/genetics , Poaceae/metabolism , Oryza/genetics , Oryza/metabolism
9.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108274

ABSTRACT

Plant-specific lateral organ boundaries domain (LBD) proteins play important roles in plant growth and development. Foxtail millet (Setaria italica) is one new C4 model crop. However, the functions of foxtail millet LBD genes are unknown. In this study, a genome-wide identification of foxtail millet LBD genes and a systematical analysis were conducted. A total of 33 SiLBD genes were identified. They are unevenly distributed on nine chromosomes. Among these SiLBD genes, six segmental duplication pairs were detected. The thirty-three encoded SiLBD proteins could be classified into two classes and seven clades. Members in the same clade have similar gene structure and motif composition. Forty-seven kinds of cis-elements were found in the putative promoters, and they are related to development/growth, hormone, and abiotic stress response, respectively. Meanwhile, the expression pattern was investigated. Most SiLBD genes are expressed in different tissues, while several genes are mainly expressed in one or two kinds of tissues. In addition, most SiLBD genes respond to different abiotic stresses. Furthermore, the function of SiLBD21, which is mainly expressed in roots, was characterized by ectopic expression in Arabidopsis and rice. Compared to controls, transgenic plants generated shorter primary roots and more lateral roots, indicating the function of SiLBD21 in root development. Overall, our study laid the foundation for further functional elucidation of SiLBD genes.


Subject(s)
Arabidopsis , Setaria Plant , Setaria Plant/metabolism , Plant Proteins/metabolism , Multigene Family , Stress, Physiological/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Phylogeny
10.
J Plant Physiol ; 283: 153949, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36842335

ABSTRACT

Abscisic acid (ABA) is an endogenous phytohormone that plays an important role in regulating plant growth, development, and stress response. Pyrabactin resistance 1-like (PYR/PYL) proteins are ABA receptors and core components of ABA signalling in plants. This study identified nine PYL genes in the Brachypodium distachyon genome and they distribute on three chromosomes. Phylogenetical BdPYLs were classified into three clades. 81 protein-protein interactions between 9 BdPYLs and 9 BdPP2C proteins were predicted and 66 pairs were verified by yeast two-hybrid assay previously. Relatively, BdPYL genes are expressed in leaves at high level, and ABA and drought regulate their expression. A homologue of Arabidopsis PYL9, BdPYL5 was selected to overexpress in Arabidopsis to characterize its function. In general, overexpression of BdPYL5 enhanced ABA sensitivity and drought tolerance, implying its conserved function. Our study lays the foundation for further functional elucidation of BdPYL genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brachypodium , Arabidopsis/genetics , Brachypodium/genetics , Brachypodium/metabolism , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
11.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012100

ABSTRACT

RAV transcription factors (TFs) are unique to higher plants and contain both B3 and APETALA2 (AP2) DNA binding domains. Although sets of RAV genes have been identified from several species, little is known about this family in wheat. In this study, 26 RAV genes were identified in the wheat genome. These wheat RAV TFs were phylogenetically clustered into three classes based on their amino acid sequences. A TaRAV gene located on chromosome 1D was cloned and named TaRAV1. TaRAV1 was expressed in roots, stems, leaves, and inflorescences, and its expression was up-regulated by heat while down-regulated by salt, ABA, and GA. Subcellular localization analysis revealed that the TaRAV1 protein was localized in the nucleus. The TaRAV1 protein showed DNA binding activity in the EMSA assay and transcriptional activation activity in yeast cells. Overexpressing TaRAV1 enhanced the salt tolerance of Arabidopsis and upregulated the expression of SOS genes and other stress response genes. Collectively, our data suggest that TaRAV1 functions as a transcription factor and is involved in the salt stress response by regulating gene expression in the SOS pathway.


Subject(s)
Arabidopsis , Triticum , Arabidopsis/metabolism , DNA , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/metabolism
12.
Gene ; 836: 146691, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35738446

ABSTRACT

As one kind of plant-specific transcription factors (TFs), WOX (Wuschel-related homeobox) plays an essential role in plant growth and development. In this study, 21 WOX TFs were identified in Brachypodium distachyon. They were divided into ancient, intermediate, and WUS clades based on phylogenetic analysis. These 21 BdWOX genes are mapped on 5 chromosomes unevenly. In the promoters, the most abundant cis-elements are ABRE, TGACG-motif, and G-box. qRT-PCR results showed that most BdWOX genes are expressed in vegetative and reproductive organs. Meanwhile, the expression of 14, 12, and 15 BdWOX genes are up-regulated by exogenous 6-BA, NAA, and GA, respectively. These results indicated that BdWOX genes participate in hormone signaling and regulate plant growth and development. Overexpression of BdWOX12 in Arabidopsis improved the root system, further indicating the functions of BdWOX genes in growth and development. This study provided a basis for the functional elucidation of BdWOX genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brachypodium , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Brachypodium/genetics , Gene Expression Regulation, Plant , Genes, Homeobox , Genes, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Plant Physiol Biochem ; 185: 13-24, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35640497

ABSTRACT

YABBY transcription factors (TFs) are plant-specific and are characterized by a C2-C2 zinc finger domain at the N-terminus and a YABBY domain at the C-terminus. In this study, eight YABBY genes were identified in the Brachypodium distachyon genome and were unevenly distributed across four chromosomes. Phylogenetic analysis classified BdYABBYs into FIL/YAB3, YAB2, CRC, and INO clades. Sixty-two putative cis-elements were identified in BdYABBY gene putative promoters, among them, CAAT-box, TATA-box, MYB, MYC, ARE, and Box_4 were shared by all. BdYABBY genes are highly expressed in inflorescences, and abiotic stresses regulate their expression. In addition, three transcripts of BdDL were identified. Over-expression in Arabidopsis has shown their different functions in reproductive development, as well as in response to cold stress. Our study lays the foundation for the functional elucidation of BdYABBY genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brachypodium , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Brachypodium/genetics , Brachypodium/metabolism , Gene Expression Regulation, Plant/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Sci Rep ; 12(1): 1158, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064208

ABSTRACT

Mining is a high-risk industry and a crucial economic driver that has a crucial role in the economies of countries worldwide. The implications of the labor market on the sustainability of the mining industry have increased the importance of sustainable human resource management at the strategic level of mining and safety management. In this article, from the perspective of management research in an energy production enterprise, we investigated the relationship between employee loyalty and employee satisfaction through a survey that targets employee loyalty, work quality, and job satisfaction and the relationship between enterprise image and switching costs. Based on service profit chain theory, we established a research model for mining employee loyalty, and 500 miners in a typical extreme mining environment in China were surveyed. The study hypotheses were tested using a structural equation model and an employee loyalty model, followed by empirical testing of the models. Employee loyalty was significantly associated with enterprise image and employee satisfaction, work quality indirectly affected loyalty through satisfaction, and the impact of switching costs on employee loyalty was not significant. We provide strong empirical evidence to help enterprises improve sustainable human resource management and regulatory policies, with important implications for safety production. Our study also provides a useful reference for further studies of sustainable human resource management in mining.

15.
Comput Methods Programs Biomed ; 211: 106451, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34644668

ABSTRACT

BACKGROUND AND OBJECTIVE: Human factors are important contributors to accidents, especially human error induced by fatigue. In this study, field tests and analyses were conducted on physiological indexes extracted from electrocardiography (ECG) and electromyography (EMG) signals in miners working under the extreme conditions of a plateau environment. To provide insights into models for fatigue classification and recognition based on machine learning, multi-modal feature information fusion and miner fatigue identification based on ECG and EMG signals as physiological indicators were studied. METHODS: Fifty-five miners were randomly selected as field test subjects, and characteristic signals were extracted from 110 groups of ECG and EMG signals as the basic signals for fatigue analysis. We conducted principal component analysis (PCA) and grey relational analysis (GRA) on the measurement indicators. Support vector machine (SVM), random forest (RF) and extreme gradient boosting (XG-Boost) machine learning models were used for fatigue classification based on multi-modal information fusion. The area under the receiver operating characteristic (ROC) curve and the confusion matrix were used to evaluate the performance of the recognition models. RESULTS: The ECG and EMG signals showed obvious changes with fatigue. The results of fatigue model identification showed that PCA feature fusion was superior to GRA feature fusion for all three machine learning approaches, and XG-Boost achieved the best performance, with a recognition accuracy of 89.47%, a sensitivity and specificity of 100%, and an AUC of 0.90. The SVM model also showed good recognition performance (89.47% accuracy, AUC=0.89). The worst performance was that of the RF model, with a recognition accuracy of only 78.95%. CONCLUSIONS: This study shows that the physiological indexes of ECG and EMG exhibit obvious, regular changes with fatigue and that it is feasible to use SVM, RF and XG-Boost models for miner fatigue identification. The PCA fusion technique can improve the identification accuracy more than the GRA method. XG-Boost classification yields the best accuracy and robustness. This study can serve as a reference for clinical research on the identification of human fatigue at high altitudes and for the clinical study of acute mountain sickness and human acclimatization to high altitudes.


Subject(s)
Electrocardiography , Support Vector Machine , Electromyography , Fatigue/diagnosis , Humans , Machine Learning
16.
Comput Biol Med ; 133: 104413, 2021 06.
Article in English | MEDLINE | ID: mdl-33915363

ABSTRACT

Fatigue-induced human error is a leading cause of accidents. The purpose of this exploratory study in China was to perform field tests to measure fatigue psychophysiological parameters, such as electrocardiography (ECG), electromyography (EMG), pulse, blood pressure, reaction time and vital capacity (VC), in miners in high-altitude and cold areas and to perform multi-feature information fusion and fatigue identification. Forty-five miners were randomly selected as subjects for a field test, and feature signals were extracted from 90 psychophysiological features as basic signals for fatigue analysis. Fatigue sensitivity indices were obtained by Pearson correlation analysis, t-test and receiver operating characteristic (ROC) curve performance evaluation. The ECG time-domain, ECG frequency-domain, EMG, VC, systolic blood pressure (SBP), and pulse were significantly different after miner fatigue. The support vector machine (SVM) and random forest (RF) techniques were used to classify and identify fatigue by information fusion and factor combination. The optimal fatigue classification factors were ECG-FD (CV Accuracy = 85.0%) and EMG (CV Accuracy = 90.0%). The optimal combination of factors was ECG-TD + ECG-FD + EMG (CV accuracy = 80.0%). Furthermore, SVM machine learning had a good recognition effect. This study shows that SVM and RF can effectively identify miner fatigue based on fatigue-related factor combinations. ECG-FD and EMG are the best indicators of fatigue, and the best performance and robustness are obtained with three-factor combination classification. This study on miner fatigue identification provides a reference for research on clinical medicine and the identification of human fatigue under high-altitude, cold and low-oxygen conditions.


Subject(s)
Altitude , Electrocardiography , China , Electromyography , Humans , Support Vector Machine
17.
Comput Methods Programs Biomed ; 196: 105667, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32712570

ABSTRACT

BACKGROUND AND OBJECTIVE: Fatigue is an important cause of operational errors, and human errors are the main cause of accidents. This study is an exploratory study in China. Field tests were conducted on heart rate variability (HRV) parameters and physiological indicators of fatigue among miners in high-altitude, cold and low-oxygen areas. This paper studies heart activity patterns during work fatigue in miners. METHODS: Fatigue affects both the sympathetic and parasympathetic nervous systems, and it is expressed as an abnormal pattern of HRV parameters. Thirty miners were selected as subjects for a field test, and HRV was extracted from 60 groups of electrocardiography (ECG) datasets as basic signals for fatigue analysis. Then, we analyzed the HRV signals of the miners using linear (time domain and frequency domain) and nonlinear dynamics (Poincaré plot and sample entropy (SampEn)), and a Pearson's correlation coefficient analysis and t-tests were performed on the measured indices. RESULTS: The results showed that the time-domain indices (SDNN, RMSSD, SDSD, pNN50, RRn, heart rate (HR), R-wave humps (RH)) and the coefficient of variation (CV)) and the frequency-domain indices (low frequency/high frequency (LF/HF), LFnorm and HFnorm) clearly changed after fatigue. These features were selected using a Poincaré plot, sample entropy, Pearson's correlation coefficient and a t-test for further analysis. The fatigue characteristics and sensitivity parameters of miners in a high-altitude, cold and hypoxic environment were obtained. CONCLUSIONS: This study provides deep insight into the use of linear and nonlinear fatigue characteristics to effectively and reliably identify miner fatigue. Furthermore, the study provides a reference for clinical studies of acute mountain sickness in high-altitude, cold and hypoxic environments.


Subject(s)
Altitude , Electrocardiography , China , Fatigue , Heart Rate , Humans
18.
Plant Sci ; 296: 110490, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32540009

ABSTRACT

Plant expansin belongs to a group of cell wall proteins and functions in plant growth and development. However, limited data are available on the contributions of expansins in Brachypodium distachyon. In the present study, a total of 38 expansins were identified in B. distachyon genome. Phylogenetic analysis divided the expansins into four groups, namely EXPA, EXPB, EXLA, and EXLB. Chromosomal distribution showed that they were unevenly distributed on 4 chromosomes. A total of six tandem duplication pairs and four segmental duplication pairs were detected, which contributed to the expansion of the B. distachyon expansin gene family. Expansins in the same group shared similar gene structure and motif composition. Three types of cis-elements, development-related, hormone-related, and abiotic stresses-related elements were found in the B. distachyon expansin gene promoters. Expression profiles indicated that most of B. distachyon expansin genes participate in plant development and abiotic stress responses. Overexpression of BdEXPA27 increased seed width and length, root length, root hair number and length in Arabidopsis and showed higher germination rate in transgenic lines. This study establishes a foundation for further investigation of B. distachyon expansin genes and provides novel insights into their biological functions.


Subject(s)
Brachypodium/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Arabidopsis , Chromosomes, Plant/genetics , Gene Duplication/genetics , Genes, Plant/physiology , Genome-Wide Association Study , Phylogeny , Plant Proteins/physiology , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction
19.
Pathol Oncol Res ; 26(2): 1153-1163, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31175550

ABSTRACT

Cullin-1 (CUL1) is an important factor for tumor growth and a potential therapeutic target for breast cancer therapy, but the molecular mechanism in triple-negative breast cancer (TNBC) is unknown. In the present study, CUL1 shRNA was transfected into BT549 and MDA-MB-231 breast cancer cells. Cell morphology, adhesion, invasion, and migration assays were carried out in the CUL1 knockdown cells. Additionally, protein expression levels of epithelial-mesenchymal transition (EMT)-related factors, Akt phosphorylation at S473 (pAkt), glycogen synthase kinase-3ß phosphorylation at ser9 (pGSK3ß), cytoplasmic and nuclear ß-catenin, and epidermal growth factor receptor phosphorylation at Tyr1068 (pEGFR) were detected by Western blot analysis. CUL1 knockdown significantly suppressed the adhesion, invasion and migration capabilities of the cells, and decreased the expression of Snail1/2, ZEB1/2, Twist1/2, Vimentin, and increased the expression of Cytokeratin 18 (CK18). Moreover, CUL1 knockdown significantly downregulated the phosphorylated levels of Akt, GSK3ß, and EGFR, inhibiting the translocation of ß-catenin from the cytoplasm to the nucleus. The results indicate that CUL1 knockdown prohibited the metastasis behaviors of breast cancer cells through downregulation (dephosphorylation) of the EMT signaling pathways of EGFR and Akt/GSK3ß/ß-catenin in breast cancer. These results strongly suggested that reinforcement of the EMT might be a key for CUL1 to accelerate TNBC metastasis.


Subject(s)
Cullin Proteins/metabolism , Epithelial-Mesenchymal Transition/physiology , Neoplasm Invasiveness/pathology , Triple Negative Breast Neoplasms/pathology , Cell Adhesion/physiology , Cell Line, Tumor , Cell Movement/physiology , Cullin Proteins/genetics , Female , Gene Knockdown Techniques , Humans
20.
Plants (Basel) ; 8(8)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398900

ABSTRACT

Myelocytomatosis oncogenes (MYC) transcription factors (TFs) belong to basic helix-loop-helix (bHLH) TF family and have a special bHLH_MYC_N domain in the N-terminal region. Presently, there is no detailed and systematic analysis of MYC TFs in wheat, rice, and Brachypodium distachyon. In this study, 26 TaMYC, 7 OsMYC, and 7 BdMYC TFs were identified and their features were characterized. Firstly, they contain a JAZ interaction domain (JID) and a putative transcriptional activation domain (TAD) in the bHLH_MYC_N region and a BhlH region in the C-terminal region. In some cases, the bHLH region is followed by a leucine zipper region; secondly, they display tissue-specific expression patterns: wheat MYC genes are mainly expressed in leaves, rice MYC genes are highly expressed in stems, and B. distachyon MYC genes are mainly expressed in inflorescences. In addition, three types of cis-elements, including plant development/growth-related, hormone-related, and abiotic stresses-related were identified in different MYC gene promoters. In combination with the previous studies, these results indicate that MYC TFs mainly function in growth and development, as well as in response to stresses. This study laid a foundation for the further functional elucidation of MYC genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...