Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 11(5): nwae101, 2024 May.
Article in English | MEDLINE | ID: mdl-38698902

ABSTRACT

The photoinduced dipole force (PiDF) is an attractive force arising from the Coulombic interaction between the light-induced dipoles on the illuminated tip and the sample. It shows extreme sample-tip distance and refractive index dependence, which is promising for nanoscale infrared (IR) imaging of ultrathin samples. However, the existence of PiDF in the mid-IR region has not been experimentally demonstrated due to the coexistence of photoinduced thermal force (PiTF), typically one to two orders of magnitude higher than PiDF. In this study, we demonstrate that, with the assistance of surface phonon polaritons, the PiDF of c-quartz can be enhanced to surpass its PiTF, enabling a clear observation of PiDF spectra reflecting the properties of the real part of permittivity. Leveraging the detection of the PiDF of phonon polaritonic substrate, we propose a strategy to enhance the sensitivity and contrast of photoinduced force responses in transmission images, facilitating the precise differentiation of the heterogeneous distribution of ultrathin samples.

2.
RSC Adv ; 14(23): 15987-15993, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765478

ABSTRACT

The type of self-assembled structure has a significant impact on the ionic conductivity of block copolymer or liquid crystalline (LC) ion conductors. In this study, we focus on the effect of self-assembled structures on the ionic conductivity of a non-block copolymer, LC ion conductor, which is a mixture of an azobenzene monomer (NbAzo), pentaerythritol tetre(3-mercapropionate) (PETMP), and a lithium salt, lithium bis(trifluoromethane)sulfonimide (LiTFSI). The self-assembled structures and ionic conductivities of ion conductors having different doping ratios of lithium salt to monomer were examined. With the increase in the doping ratio, the self-assembled structure transforms from lamellae (LAM) to double gyroid (GYR). The effect of self-assembled structure on ionic conductivity was analyzed; it was found that the conductivity of the GYR structure was about 3.6 times that of the LAM one, indicating that obtaining the GYR structure is more effective in improving ionic conductivity.

3.
Materials (Basel) ; 16(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687603

ABSTRACT

UV debonding acrylate adhesive (UDAA) plays a crucial role in the semiconductor industry, where its excellent adhesion is required to ensure the stability of silicon wafers and leave no residue on the surface after UV irradiation. The necessary UV debonding is achieved through the formation of rigid networks by the reactions of all the vinyl groups in the system. Acrylate copolymers with vinyl groups are typically obtained by the grafting reaction of isocyanate with a side-chain hydroxyl comonomer. However, these grafting reactions easily fail due to early cross-link formation. In this study, we illustrate a straightforward method for preparing UDAA by conducting a postgrafting reaction after one-step mixing of isocyanate functional monomer (IPDI-H) and hydroxyl acrylate copolymers (BA-H), thereby skipping the abovementioned vinyl grafting process. The chemical structures of the synthesized IPDI-H and BA-H were confirmed using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) analysis. Gel permeation chromatography (GPC) was employed to determine their molecular weights, while differential scanning calorimetry (DSC) was used to determine their glass transition temperatures. The postgrafting reactions successfully introduced vinyl groups onto the polyacrylate copolymer chains, resulting in high bonding strength during use and a significant decrease in peeling strength after UV irradiation. Rheological methods, including the three-interval thixotropy test (3ITT) and tack test modes, were employed to characterize a series of acrylate UV debonding adhesives. The recovery percentage of the storage modulus in the 3ITT mode indicated that a 0.6 wt% isocyanate curing agent made the UV debonding adhesives resistant to deformation. From the maximum normal force in the tack test mode, it was found that UDAA with 10 wt% PETA monomer and 30 wt% C5 tackifying resin exhibited excellent combined adhesion and debonding properties, which were further confirmed by peel strength tests. Microscope images of the wafer surfaces after removing the adhesive tapes demonstrated the excellent UV debonding properties achieved after 40 s of UV irradiation through the postgrafting reaction. The prepared UDAA has excellent properties; the peel strength can reach 15 N/25 mm before UV irradiation and can be reduced to 0.5 N/25 mm after ultraviolet irradiation. This research establishes a comprehensive method for understanding and applying UDAA in various applications.

4.
Nanotechnology ; 34(20)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36709513

ABSTRACT

Polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) is one of the most widely studied block copolymers for direct self-assembly because of its excellent compatibility with traditional processes. However, pattern transfer of PS-b-PMMA block copolymers (BCPs) remains a great challenge for its applications due to the insufficient etching resolution. In this study, the effect of ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate (HMHF) additives on the line edge roughness (LER) performances of PS-b-PMMA self-assembled patterns was studied. Trace addition of HMHF kept the photolithography compatibility of PS-b-PMMA block copolymer films, but obviously increased their Flory-Huggins interaction parameter (χ) and enabled phase separation of disordered low molecular weight BCPs. LER value was effectively decreased by blending HMHF directly with PS-b-PMMA or from a supplying top layer of polyvinylpyrrolidone containing HMHF additives. This study shows an excellent strategy to improve the deficiencies of existing block copolymers.

5.
ACS Appl Mater Interfaces ; 10(19): 16747-16759, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29667409

ABSTRACT

Polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) is one of the prototypical block copolymers in directed self-assembly (DSA) research and development, with standardized protocols in place for processing on industrially relevant 300 mm wafers. Scaling of DSA patterns to pitches below 20 nm using PS- b-PMMA, however, is hindered by the relatively low Flory-Huggins interaction parameter, χ. Here, we investigate the approach of adding small amounts of ionic liquids (ILs) into PS- b-PMMA, which selectively segregates into the PMMA domain and effectively increases the χ parameter and thus the pattern resolution. The amount of IL additive is small enough to result in limited changes in PS- b-PMMA's surface and interfacial properties, thus maintaining industry-friendly processing by thermal annealing with a free surface. Three different ILs are studied comparatively regarding their compositional process window, capability of increasing χ, and thermal stability. By adding ∼3.1 vol % of the champion IL into a low-molecular-weight PS- b-PMMA ( Mn = 10.3k- b-9.5k), we demonstrated DSA on chemically patterned substrates of lamellar structures with feature sizes <8.5 nm. Compatibility of the PS- b-PMMMA/IL blends with the standardized processes that have been previously developed suggests that such blend materials could provide a drop-in solution for sub-10 nm lithography with the processing advantages of PS- b-PMMA.

6.
Macromol Biosci ; 8(6): 478-83, 2008 Jun 11.
Article in English | MEDLINE | ID: mdl-18421724

ABSTRACT

Electrogenerated PPy doped with pSA was used as a substrate for immobilization of GOD. This was achieved via covalent bonding of carboxyl groups of the main chain of alginate with amino groups of the enzyme. The pH-induced aggregation behavior of SA in aqueous solution was employed to provide optimum conditions for electrochemical preparation of PPy by galvanostatic methods. GOD was attached to the electrode surface by reaction between the carboxyl groups in the main chain of pSA with amino groups of GOD after treatment with EDC and NHS. The linkage of GOD enzyme to the conductive surface was characterized by ATR spectroscopy and SEM CV was used to demonstrate the bioactivity of the enzyme electrode toward glucose.


Subject(s)
Alginates/chemistry , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Glucose/analysis , Polymers/chemistry , Pyrroles/chemistry , Alginates/ultrastructure , Benzoquinones/chemistry , Biosensing Techniques/methods , Calibration , Electrochemistry , Glucose/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Oxidation-Reduction , Surface Properties
7.
Langmuir ; 22(8): 3899-905, 2006 Apr 11.
Article in English | MEDLINE | ID: mdl-16584273

ABSTRACT

This work demonstrates a facile route to the synthesis of large quantities of uniform polyaniline-sodium alginate (PANI-SA) nanofibers template-guided by SA. This approach is an easy, inexpensive, environmentally friendly, and scalable one-step method to produce uniform nanofibers with controllable average diameters in bulk quantities. We started with biopolymer-monomer complexes formed between the carboxylic groups of SA and the amino group of an organic monomer (aniline). When ammonium persulfate was added, such polymer-monomer complexes could be polymerized. Then, polyaniline-sodium alginate nanofibers with uniform diameters from 40 to 100 nm were successfully obtained in a high yield. The resultant PANI-SA nanofibers were characterized by means of different techniques, such as ultraviolet-visible spectroscopy, thermogravimetric analysis, wide-angle X-ray diffraction, Fourier transform infrared spectroscopy, and scanning and transmission electron microscopy methods. The mechanism governing the formation of the polyaniline-sodium alginate nanofibers is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...