Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 8: 14055, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28067242

ABSTRACT

With radar interferometry, the next-generation Surface Water and Ocean Topography satellite mission will improve the measured sea surface height resolution down to 15 km, allowing us to investigate for the first time the global upper ocean variability at the submesoscale range. Here, by analysing shipboard Acoustic Doppler Current Profiler measurements along 137°E in the northwest Pacific of 2004-2016, we show that the observed upper ocean velocities are comprised of balanced geostrophic flows and unbalanced internal waves. The transition length scale, Lt, separating these two motions, is found to depend strongly on the energy level of local mesoscale eddy variability. In the eddy-abundant western boundary current region of Kuroshio, Lt can be shorter than 15 km, whereas Lt exceeds 200 km along the path of relatively stable North Equatorial Current. Judicious separation between the geostrophic and internal wave signals represents both a challenge and an opportunity for the Surface Water and Ocean Topography mission.

2.
Sci Rep ; 6: 30597, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27476998

ABSTRACT

Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.

SELECTION OF CITATIONS
SEARCH DETAIL