Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 820
Filter
1.
Int J Biol Macromol ; 271(Pt 2): 132345, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750848

ABSTRACT

As an important source of green cleaning flame retardants, bio-based materials have been widely studied by researchers. However, the development of efficient biobased flame retardants and convenient finishing methods was of great significance for the functional finishing of materials. Herein, a convenient and efficient flame retardant cotton fabric was prepared via layer by layer self-assembly (LbL) by alternating precipitation of a novel bio-based flame retardant phosphorylated sodium alginate (PSA) and alkylammonium functionalized siloxane (A-POSS). The effect of coating number on flame retardancy and thermal properties of coated cotton fabric was systematically studied. Thermogravimetric analysis (TGA) results showed that residual char contents of AP/PS-15BL under air and N2 atmospheres increased by 252.0% and 225.2%, respectively, compared with control cotton. In vertical flammability tests, both the AP/PS-10BL and AP/PS-15BL showed self-extinguishing behavior and successfully passed the UL-94 V-0 rating. More importantly, the LOI value of AP/PS-15BL was significantly increased to 35.0% from 20.0% of pure cotton fabric. Additionally, coated samples showed good mechanical properties and washable resistance. In CONE test, the peak heat release rate (PHRR) and total heat release rate (THR) of AP/PS-15BL decreased by 89.3% and 49.3% respectively, compared with control cotton. Therefore, this green and convenient flame-retardant finishing method has great application potential in the multi-functional finishing of cotton fabrics.

2.
Virology ; 595: 110084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692132

ABSTRACT

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. The genome of DTMUV is translated into a polyprotein, which is further cleaved into several protein by viral NS2B3 protease and host proteases. Crucially, the cleavage of the NS2A/2B precursor during this process is essential for the formation of replication complexes and viral packaging. Previous research has demonstrated that alanine mutations in NS2A/2B (P1P1' (AA)) result in an attenuated strain (rDTMUV-NS2A/2B-P1P1' (AA)) by disrupting NS2A/2B cleavage. In this study, we investigate the effects of the P1P1' (AA) mutation on the viral life cycle and explore compensatory mutations in rDTMUV-NS2A/2B-P1P1' (AA). Infected ducklings exhibit similar body weight gain and viral tissue loads to DTMUV-WT. Compensatory mutations E-M349E and P1(T) emerge, restoring proliferation levels to those of rDTMUV-WT. Specifically, E-M349E enhances viral packaging, while P1(T) reinstates NS2A/2B proteolysis in vitro. Thus, our findings reveal novel compensatory sites capable of restoring the attenuated DTMUV during polyprotein cleavage and packaging.


Subject(s)
Ducks , Flavivirus , Poultry Diseases , Viral Nonstructural Proteins , Virus Assembly , Virus Replication , Animals , Ducks/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Flavivirus/genetics , Flavivirus/physiology , Poultry Diseases/virology , Flavivirus Infections/virology , Mutation
3.
Virulence ; 15(1): 2359467, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38808732

ABSTRACT

Pasteurella multocida (P. multocida) is a bacterial pathogen responsible for a range of infections in humans and various animal hosts, causing significant economic losses in farming. Integrative and conjugative elements (ICEs) are important horizontal gene transfer elements, potentially enabling host bacteria to enhance adaptability by acquiring multiple functional genes. However, the understanding of ICEs in P. multocida and their impact on the transmission of this pathogen remains limited. In this study, 42 poultry-sourced P. multocida genomes obtained by high-throughput sequencing together with 393 publicly available P. multocida genomes were used to analyse the horizontal transfer of ICEs. Eighty-two ICEs were identified in P. multocida, including SXT/R391 and Tn916 subtypes, as well as three subtypes of ICEHin1056 family, with the latter being widely prevalent in P. multocida and carrying multiple resistance genes. The correlations between insertion sequences and resistant genes in ICEs were also identified, and some ICEs introduced the carbapenem gene blaOXA-2 and the bleomycin gene bleO to P. multocida. Phylogenetic and collinearity analyses of these bioinformatics found that ICEs in P. multocida were transmitted vertically and horizontally and have evolved with host specialization. These findings provide insight into the transmission and evolution mode of ICEs in P. multocida and highlight the importance of understanding these elements for controlling the spread of antibiotic resistance.


Subject(s)
Gene Transfer, Horizontal , Genome, Bacterial , Pasteurella Infections , Pasteurella multocida , Phylogeny , Pasteurella multocida/genetics , Pasteurella multocida/classification , Animals , Pasteurella Infections/microbiology , Pasteurella Infections/epidemiology , Pasteurella Infections/transmission , DNA Transposable Elements , Conjugation, Genetic , Evolution, Molecular , Poultry/microbiology , Prevalence , High-Throughput Nucleotide Sequencing
4.
Sci Transl Med ; 16(747): eadl1408, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748772

ABSTRACT

Essential tremor (ET) is the most prevalent movement disorder, characterized primarily by action tremor, an involuntary rhythmic movement with a specific frequency. However, the neuronal mechanism underlying the coding of tremor frequency remains unexplored. Here, we used in vivo electrophysiology, optogenetics, and simultaneous motion tracking in the Grid2dupE3 mouse model to investigate whether and how neuronal activity in the olivocerebellum determines the frequency of essential tremor. We report that tremor frequency was encoded by the temporal coherence of population neuronal firing within the olivocerebellums of these mice, leading to frequency-dependent cerebellar oscillations and tremors. This mechanism was precise and generalizable, enabling us to use optogenetic stimulation of the deep cerebellar nuclei to induce frequency-specific tremors in wild-type mice or alter tremor frequencies in tremor mice. In patients with ET, we showed that deep brain stimulation of the thalamus suppressed tremor symptoms but did not eliminate cerebellar oscillations measured by electroencephalgraphy, indicating that tremor-related oscillations in the cerebellum do not require the reciprocal interactions with the thalamus. Frequency-disrupting transcranial alternating current stimulation of the cerebellum could suppress tremor amplitudes, confirming the frequency modulatory role of the cerebellum in patients with ET. These findings offer a neurodynamic basis for the frequency-dependent stimulation of the cerebellum to treat essential tremor.


Subject(s)
Cerebellum , Essential Tremor , Neurons , Olivary Nucleus , Essential Tremor/physiopathology , Animals , Humans , Olivary Nucleus/physiopathology , Cerebellum/physiopathology , Mice , Male , Optogenetics , Female , Deep Brain Stimulation , Middle Aged , Electroencephalography , Aged
5.
Vet Res ; 55(1): 63, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760810

ABSTRACT

The maintenance of viral protein homeostasis depends on the interaction between host cell proteins and viral proteins. As a molecular chaperone, heat shock protein 70 (HSP70) has been shown to play an important role in viral infection. Our results showed that HSP70 can affect translation, replication, assembly, and release during the life cycle of duck hepatitis A virus type 1 (DHAV-1). We demonstrated that HSP70 can regulate viral translation by interacting with the DHAV-1 internal ribosome entry site (IRES). In addition, HSP70 interacts with the viral capsid proteins VP1 and VP3 and promotes their stability by inhibiting proteasomal degradation, thereby facilitating the assembly of DHAV-1 virions. This study demonstrates the specific role of HSP70 in regulating DHAV-1 replication, which are helpful for understanding the pathogenesis of DHAV-1 infection and provide additional information about the role of HSP70 in infection by different kinds of picornaviruses, as well as the interaction between picornaviruses and host cells.


Subject(s)
HSP70 Heat-Shock Proteins , Hepatitis Virus, Duck , Internal Ribosome Entry Sites , Virus Replication , Hepatitis Virus, Duck/physiology , Hepatitis Virus, Duck/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Animals , Viral Structural Proteins/metabolism , Viral Structural Proteins/genetics , Ducks , Poultry Diseases/virology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/metabolism , Protein Biosynthesis
6.
Front Immunol ; 15: 1365521, 2024.
Article in English | MEDLINE | ID: mdl-38629064

ABSTRACT

3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.


Subject(s)
Picornaviridae Infections , Picornaviridae , Humans , Virus Replication/genetics , Picornaviridae/genetics , Viral Proteins/genetics , RNA, Viral/genetics
7.
J Antimicrob Chemother ; 79(6): 1385-1396, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38629469

ABSTRACT

BACKGROUND: Riemerella anatipestifer encodes an iron acquisition system, but whether it encodes the iron efflux pump and its role in antibiotic resistance are largely unknown. OBJECTIVES: To screen and identify an iron efflux gene in R. anatipestifer and determine whether and how the iron efflux gene is involved in antibiotic resistance. METHODS: In this study, gene knockout, streptonigrin susceptibility assay and inductively coupled plasma mass spectrometry were used to screen for the iron efflux gene ietA. The MIC measurements, scanning electron microscopy and reactive oxygen species (ROS) detection were used to verify the role of IetA in aztreonam resistance and its mechanism. Mortality and colonization assay were used to investigate the role of IetA in virulence. RESULTS: The deletion mutant ΔietA showed heightened susceptibility to streptonigrin, and prominent intracellular iron accumulation was observed in ΔfurΔietA under excess iron conditions. Additionally, ΔietA exhibited increased sensitivity to H2O2-produced oxidative stress. Under aerobic conditions with abundant iron, ΔietA displayed increased susceptibility to the ß-lactam antibiotic aztreonam due to heightened ROS production. However, the killing efficacy of aztreonam was diminished in both WT and ΔietA under anaerobic or iron restriction conditions. Further experiments demonstrated that the efficiency of aztreonam against ΔietA was dependent on respiratory complexes Ⅰ and Ⅱ. Finally, in a duckling model, ΔietA had reduced virulence compared with the WT. CONCLUSION: Iron efflux is critical to alleviate oxidative stress damage and ß-lactam aztreonam killing in R. anatipestifer, which is linked by cellular respiration.


Subject(s)
Anti-Bacterial Agents , Aztreonam , Iron , Microbial Sensitivity Tests , Oxidative Stress , Riemerella , Oxidative Stress/drug effects , Iron/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Riemerella/drug effects , Riemerella/genetics , Riemerella/pathogenicity , Riemerella/metabolism , Aztreonam/pharmacology , Flavobacteriaceae Infections/microbiology , Virulence , beta-Lactam Resistance , Ducks , Reactive Oxygen Species/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Streptonigrin/pharmacology , Gene Knockout Techniques , Poultry Diseases/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
8.
Poult Sci ; 103(6): 103727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652953

ABSTRACT

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. Duck Tembusu virus genome encodes one polyprotein that undergoes cleavage to produce 10 proteins. Among these, NS4B, the largest transmembrane protein, plays a crucial role in the viral life cycle. In this study, we investigated the localization of NS4B and found that it is located in the endoplasmic reticulum, where it co-localizes with DTMUV dsRNA. Subsequently, we confirmed 5 different transmembrane domains of NS4B and discovered that only its transmembrane domain 3 (TMD3) can traverse ER membrane. Then mutations were introduced in the conserved amino acids of NS4B TMD3 of DTMUV replicon and infectious clone. The results showed that V111G, V117G, and I118G mutations enhanced viral RNA replication, while Q104A, T106A, A113L, M116A, H120A, Y121A, and A122G mutations reduced viral replication. Recombinant viruses with these mutations were rescued and studied in BHK21 cells. The findings demonstrated that A113L and H120A mutations led to higher viral titers than the wild-type strain, while Q104A, T106A, V111G, V117G, and Y121A mutations attenuated viral proliferation. Additionally, H120A, M116A, and A122G mutations enhanced viral proliferation. Furthermore, Q104A, T106A, V111G, M116A, V117G, Y121A, and A122G mutants showed reduced viral virulence to 10-d duck embryos. Animal experiments further indicated that all mutation viruses resulted in lower genome copy numbers in the spleen compared to the WT group 5 days postinfection. Our data provide insights into the topological model of DTMUV NS4B, highlighting the essential role of NS4B TMD3 in viral replication and proliferation.


Subject(s)
Ducks , Flavivirus , Viral Nonstructural Proteins , Virus Replication , Animals , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Flavivirus/physiology , Flavivirus/genetics , Poultry Diseases/virology , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Mutation
9.
J Adv Res ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38548264

ABSTRACT

INTRODUCTION: Overwhelming neutrophil activation and oxidative stress significantly contribute to acute respiratory distress syndrome (ARDS) pathogenesis. However, the potential of repurposing ribociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor used clinically in cancer treatment, for treating neutrophilic ARDS remains uncertain. This study illustrated the ability and underlying mechanism of ribociclib for treating ARDS and neutrophilic inflammation. METHODS: Primary human neutrophils were used to determine the therapeutic effects of ribociclib on respiratory bursts, chemotactic responses, and inflammatory signaling. In vitro and silico analyses were performed to determine the underlying molecular mechanisms. The potential of ribociclib repurposing was evaluated using an in vivo ARDS model in lipopolysaccharide (LPS)-primed mice. RESULTS: We found that treatment using ribociclib markedly limited overabundant oxidative stress (reactive oxygen species [ROS]) production and chemotactic responses (integrin levels and adhesion) in activated human neutrophils. Ribociclib was also shown to act as a selective inhibitor of phosphodiesterase 4 (PDE4), thereby promoting the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, leading to the inhibition of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) phosphorylation, and calcium influx. Notably, prophylactic administration and post-treatment with ribociclib ameliorated neutrophil infiltration, lung inflammation, accumulation of oxidative stress, pulmonary destruction, and mortality in mice with LPS-induced ARDS. CONCLUSION: We demonstrated for the first time that ribociclib serves as a novel PDE4 inhibitor for treating neutrophilic inflammation and ARDS. The repurposing ribociclib and targeting neutrophilic PDE4 offer a potential off-label alternative for treating lung lesions and other inflammatory conditions.

10.
J Sci Food Agric ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466088

ABSTRACT

BACKGROUND: Early weaning is prone to damage intestinal barrier function, resulting in diarrhea, whereas rutin, as a natural flavonoid with multiple biological functions, shows potential in piglets. Therefore, the effects of dietary rutin on growth, antidiarrheal, barrier function, antioxidant status and cecal microbiota of weaned piglets were investigated with the control group (CON) (basal diet) and Rutin (basal diet+500 mg kg-1 rutin) groups fed for 14 days. RESULTS: The results showed that dietary 500 mg kg-1 rutin significantly decreased diarrhea index, serum diamine oxidase activity and total aerobic bacterial population in mesenteric lymph nodes, whereas it significantly increased the gain-to-feed ratio (G:F) and serum growth hormone content, jejunal villus height and villus height to crypt depth ratio, and also enhanced jejunal claudin-1 and zonula occludens-1 mRNA and protein expression. Meanwhile, dietary rutin significantly decreased inflammation-associated mRNA expression, malondialdehyde (MDA) content, swollen mitochondrial number and mitochondrial area in the jejunum, whereas it increased the total superoxide dismutase (T-SOD) and glutathione peroxidase activities and activated the Nrf2 signaling pathway. Moreover, dietary rutin significantly increased Firmicutes abundance and decreased Campylobacterota abundance, which were closely associated with the decreased diarrhea index and MDA content or increased Claudin-1 expression and T-SOD activity. CONCLUSION: Dietary 500 mg kg-1 rutin increased G:F by improving intestinal morphology, and alleviated diarrhea by enhancing intestinal barrier, which might be associated with the enhanced antioxidant capacity via activating the Nrf2/Keap1 signaling pathway and the improved cecal microbial composition in weaned piglets. © 2024 Society of Chemical Industry.

11.
Poult Sci ; 103(5): 103585, 2024 May.
Article in English | MEDLINE | ID: mdl-38492247

ABSTRACT

Goose astrovirus (GAstV) is a newly identified viral pathogen threatening waterfowl, exhibiting a high prevalence across various regions in China. Notably, the Guanghan District of Deyang City, situated in Sichuan Province, has faced a outbreak of GAstV, resulting in significant mortality among goslings due to the induction of gout-like symptoms. In our research, we successfully isolated a GAstV strain known as GAstV SCG3. This strain exhibits efficient replication capabilities, proving virulent in goslings and goose embryos. Our study delved into the characteristics of GAstV SCG3 both in vitro and in vivo. Additionally, we examined tissue phagocytosis and the distribution of GAstV SCG3 in deceased goslings using H&E staining and IHC techniques. According to the classification established by the ICTV, GAstV SCG3 falls under the category of GAstV genotype-2. Notably, it demonstrates the highest homology with the published AHAU5 sequences, reaching an impressive 98%. Furthermore, our findings revealed that GAstV SCG3 exhibits efficient proliferation exclusively in goose embryos and in LMH cells, while not manifesting in seven other types of avian and mammalian cells. Significantly, the mortality of GAstV on goslings and goose embryos are 93.1 and 80%, respectively. Moreover, the viral load in the livers of infected goslings surpasses that in the kidneys when compared with the attenuated strain GAstV SCG2. The mortality of GAstV is usually between 20% and 50%, our study marks the first report of a virulent GAstV strain with such a high mortality.


Subject(s)
Astroviridae Infections , Avastrovirus , Geese , Genotype , Poultry Diseases , Animals , Geese/virology , Poultry Diseases/virology , Poultry Diseases/mortality , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Virulence , Avastrovirus/genetics , Avastrovirus/physiology , Avastrovirus/pathogenicity , China , Phylogeny
12.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301890

ABSTRACT

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Subject(s)
Bacteriocins , Klebsiella pneumoniae , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/metabolism , Bacteriocins/pharmacology , Bacteriocins/toxicity , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Porins/genetics , Porins/metabolism , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Domains , Drug Resistance, Multiple, Bacterial/drug effects
13.
Int J Biol Macromol ; 263(Pt 2): 129836, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307435

ABSTRACT

With the increasing awareness of environmental protection, the demand for eco-friendly bio-derived flame-retardant for textiles has received increasing attention. In this work, a fully bio-derived phosphorylated furan-based flame retardant (FAP) was synthesized by the Schiff reaction of furan-based compounds (furfural and furfurylamine). To evaluate the application scope and flame retardant efficiency of FAP, cotton fabrics and PLA nonwovens were selected as biomass-based representatives of natural fiber materials and synthetic fiber materials, respectively. Significantly, based on the composition of furan ring, phosphorus and nitrogen containing components of FAP, excellent charring and flame retardant properties of coated cotton fabrics and PLA nonwovens can be expected. TGA results showed that the residual char of C-FAP-3 and P-FAP-3 were 39.7% (increased by 267.6%) and 16.7% (increased by 215.1%), respectively, higher than those of control cotton (10.8%) and PLA nonwoven (5.3%). Cone test results exhibited that the peak heat release rate (PHRR) and total heat release (THR) values of C-FAP-3 were sharply decreased by 69.4% and 37.8%, respectively. P-FAP-3 also displayed a significant reduction in PHRR, implying high flame retardancy of C-FAP-3 and P-FAP-3. Notably, through the weight gains of FAP coating on cotton and PLA as well as the final LOI and VBT results of the flame retardant treated fabrics, it can be preliminarily inferred that control cotton fabrics are more likely to achieve better flame retardant effects than PLA. Additionally, the facile synthetic strategy of fully bio-derived flame retardants is expected to promote the development of green flame retardant strategies for high-performance textiles.


Subject(s)
Flame Retardants , Biomass , Furans , Furaldehyde , Gossypium , Polyesters
14.
Poult Sci ; 103(4): 103469, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335667

ABSTRACT

Tembusu virus (TMUV), an avian pathogenic flavivirus, has emerged as a significant threat to the duck industry in Southeast Asia, causing substantial economic losses. Due to the antibody-dependent enhancement (ADE) effect of TMUV subneutralizing antibodies, there is a pressing need to further develop new TMUV vaccine target antigens that ensure both safety and efficacy. Here, the TMUV non-structural protein 1 (NS1) as a target for development of effective anti-TMUV vaccines was unveiled. The amino acid sequences of TMUV NS1 exhibit a high degree of conservation across different strains (92.63-100%). To investigate the potential of TMUV NS1 as a vaccine target, the TMUV NS1-based plasmids were constructed and identified the C-terminal 30 amino acids residues of TMUV E (EC30) as an effective signal peptide for promoting NS1 expression and secretion. Subsequently, the plasmid pVAX1-EC30-NS1 was employed to immunize ducks, resulting in specific anti-NS1 IgG responses being stimulated, while without inducing anti-TMUV neutralizing antibodies. Furthermore, the cellular immune responses triggered by the TMUV NS1 were evaluated, observing a notable increase in lymphocyte proliferation at 4 wk and 6 wk postinjection with the pVAX1-EC30-NS1. Additionally, there was a significant up-regulation of NS1-specific Il-4 and Ifnγ levels at these time points. Following this, ducks from different groups were challenged with TMUV, and remarkably, those immunized with the NS1 vaccine displayed significantly lower viral copies both at 3 d postinfection (dpi) and 7 dpi (P < 0.05) compared to ducks immunized with the control vector. Notably, the NS1 demonstrated remarkable protection against TMUV challenge without causing severe gross lesions. Collectively, these findings highlighted the impressive immunogenicity and protectivity of the TMUV NS1. Consequently, NS1 holds great promise as a novel antigen target for the development of efficient and safe TMUV vaccines.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Vaccines , Animals , Flavivirus Infections/prevention & control , Flavivirus Infections/veterinary , Chickens , Ducks , Antibodies, Viral/metabolism , Vaccine Development
15.
Microbiol Spectr ; 12(4): e0313323, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376226

ABSTRACT

In the previous study, it was shown that Riemerella anatipestifer (R. anatipestifer, RA), a pathogen in ducks and some other birds, encodes a hemin uptake system. The R. anatipestifer hemin uptake receptor RhuR is a TonB2-dependent hemin transporter. However, it remains unclear whether R. anatipestifer encodes additional TonB-dependent hemin transporters. Herein, we demonstrated that R. anatipestifer hemin uptake receptor B (RhuB) of R. anatipestifer CH-1 (RA CH-1) was negatively regulated by iron and mediated by the Fur protein, and knocking out rhuB damaged the ability of RA CH-1 to utilize iron from duck hemoglobin (Hb) but not that from duck serum. Moreover, the ability to use iron from Hb was restored by the expression rhuB in trans. Furthermore, the RhuB of RA CH-1 is a membrane protein, and recombinant RhuB could bind hemin at a 1:1 molar ratio in vitro. Compared to that of ΔtonB1ΔrhuR, the ability of ΔtonB1ΔrhuRΔrhuB to utilize hemin was impaired; meanwhile, compared to that of ΔtonB2ΔrhuR, the hemin utilization ability of ΔtonB2ΔrhuRΔrhuB was not affected, indicating that RhuB is a TonB2-dependent receptor. Compared to ΔrhuB, ΔrhuBΔrhuA did not affect hemin utilization. However, compared to ΔrhuA, ΔrhuBΔrhuA had reduced ability to utilize hemin, suggesting that RhuA relies on RhuB for its activity. Finally, the deletion of rhuB did not affect the virulence of RA CH-1. These results suggested that RhuB encodes a TonB2-dependent hemin receptor. The characterization of the second TonB-dependent receptor in R. anatipestifer enriches our understanding of the hemin uptake system of this bacterium.IMPORTANCEIron is essential for the survival of most bacteria, and hemin of hemoglobin can serve as an important iron source. In our previous studies, we showed that R. anatipestifer CH-1 encodes a TonB2-dependent hemin receptor RhuR, which is involved in hemin uptake. The deletion of rhuR did not abolish hemin utilization by RA CH-1. We hypothesized that additional hemin uptake systems exist in this bacterium. In this study, we identified the second TonB2-dependent hemin receptor RhuB in RA CH-1 through hemin utilization, protein localization, and hemin-binding experiments. The duck infection model showed that the deletion of rhuB did not affect the virulence of RA CH-1. This study is not only important for further understanding the hemin utilization mechanism of R. anatipestifer, but also for enriching the hemin uptake transporters of gram-negative bacteria.


Subject(s)
Hemin , Poultry Diseases , Riemerella , Animals , Bacterial Proteins/metabolism , Carrier Proteins , Iron/metabolism , Ducks/microbiology , Hemoglobins/metabolism , Poultry Diseases/microbiology
16.
J Virol ; 98(3): e0139223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38363111

ABSTRACT

Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.


Subject(s)
Anseriformes , Positive Transcriptional Elongation Factor B , RNA-Binding Proteins , Transcription Factors , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Viral Transcription , Animals
17.
Poult Sci ; 103(4): 103498, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364609

ABSTRACT

Duck plague (DP) is one of the contagious diseases caused by Duck plague virus (DPV), which is a serious threat to the development of duck farming. Us3 is a PKA-like protein kinase in alphaherpesvirus, which can regulate the biological functions of many viral proteins, but whether Us3 regulates pUL48 protein has not been reported. In this paper, Western Blot, qRT-PCR, dual luciferase reporter system and Co-IP were used to investigate the relationship between pUL48 and Us3. The results showed that: 1) pUL48 interacted with Us3 at 138-256aa through its DBD region. 2) Us3 enhanced the protein expression of pUL48 in a dose-dependent manner. 3) Us3 promoted the mRNA level of pUL48 by activating its promoter activity. 4) Us3 inhibited the transcriptional activation function of pUL48. The results can provide scientific data for perfecting and supplementing the function of alpha herpesvirus Us3 and pUL48.


Subject(s)
Chickens , Ducks , Mardivirus , Animals , Ducks/metabolism , Chickens/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Protein Kinases/genetics
18.
Poult Sci ; 103(4): 103446, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377689

ABSTRACT

Duck plague virus (DPV) is extremely infectious and lethal, so antiviral drugs are urgently needed. Our previous study shows that DPV infection with duck embryo fibroblast (DEF) induces reactive oxygen species (ROS) changes and promotes apoptosis. In this study, we tested the antiviral effect of the carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a common mitochondrial autophagy inducer. Our results demonstrated a dose-dependent anti-DPV effect of CCCP, CCCP-treatment blocked the intercellular transmission of DPV after infection, and we also proved that CCCP could have an antiviral effect up to 48 hpi. The addition of CCCP reversed the DPV-induced ROS changes, CCCP can inhibit virus-induced apoptosis; meanwhile, CCCP can affect mitochondrial fusion and activate mitophagy to inhibit DPV. In conclusion, CCCP can be an effective antiviral candidate against DPV.


Subject(s)
Apoptosis , Chickens , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Reactive Oxygen Species , Antiviral Agents/pharmacology
19.
RSC Adv ; 14(7): 4503-4508, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38312733

ABSTRACT

Organic cocrystal engineering provides a promising route to promote the near-infrared (NIR) light harvesting and photothermal conversion (PTC) abilities of small organic molecules through the rich noncovalent bond interactions of D/A units. Besides, the single-bond rotatable groups known as "rotors" are considered to be conducive to the nonradiative transitions of the excited states of organic molecules. Herein, we propose a single-/double-bond dual-rotor strategy to construct D-A cocrystals for NIR PTC application. The results reveal that the cocrystal exhibits an ultra-broadband absorption from 300 nm to 2000 nm profiting from the strong π-π stacking and charge transfer interactions, and the weakened p-π interaction. More importantly, the PTC efficiency of cocrystals at 1064 nm in the NIR-II region can be largely enhanced by modulating the number of rotor groups and the F-substituents of D/A units. As is revealed by fs-TA spectroscopy, the superior NIR PTC performance can be attributed to the nonradiative decays of excited states induced by the free rotation of the single-bond rotor (-CH3) from the donors and the inactive double-bond rotor ([double bond, length as m-dash]C(C[triple bond, length as m-dash]N)2) being in the active form of [-C(C[triple bond, length as m-dash]N)2] in the excited states from the acceptors. This prototype displays a promising route to extend the functionalization of small organic molecules based on organic cocrystal engineering.

20.
Antiviral Res ; 223: 105824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309307

ABSTRACT

Coxsackievirus B3 (CVB3), one serotype of enteroviruses, can induce fatal myocarditis and hepatitis in neonates, but both treatment and vaccine are unavailable. Few reports tested antivirals to reduce CVB3. Several antivirals were developed against other enterovirus serotypes, but these antivirals failed in clinical trials due to side effects and drug resistance. Repurposing of clinical drugs targeting cellular factors, which enhance viral replication, may be another option. Parasite and cancer studies showed that the cellular protein kinase B (Akt) decreases interferon (IFN), apoptosis, and interleukin (IL)-6-induced STAT3 responses, which suppress CVB3 replication. Furthermore, miltefosine, the Akt inhibitor used in the clinic for parasite infections, enhances IL-6, IFN, and apoptosis responses in treated patients, suggesting that miltefosine could be the potential antiviral for CVB3. This study was therefore designated to test the antiviral effects of miltefosine against CVB3 in vitro and especially, in mice, as few studies test miltefosine in vitro, but not in vivo. In vitro results showed that miltefosine inhibited viral replication with enhanced activation of the cellular transcription factor, STAT3, which is reported to reduce CVB3 both in vitro and in mice. Notably, STAT3 knockdown abolished the anti-CVB3 activity of miltefosine in vitro. Mouse studies demonstrated that miltefosine pretreatment reduced CVB3 lethality of mice with decreased virus loads, organ damage, and apoptosis, but enhanced STAT3 activation. Miltefosine could be prophylaxis for CVB3 by targeting Akt to enhance STAT3 activation in the mechanism, which is independent of IFN responses and hardly reported in pathogen infections.


Subject(s)
Enterovirus Infections , Phosphorylcholine/analogs & derivatives , STAT3 Transcription Factor , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt , Apoptosis , Antigens, Viral , Enterovirus Infections/drug therapy , Interleukin-6 , Antiviral Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...