Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38814698

ABSTRACT

Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, has caused huge economic losses to the pig industry, with 100% mortality in piglets aged 2 weeks and intestinal injury in pigs of other ages. However, there is still a shortage of safe and effective anti-TGEV drugs in clinics. In this study, phloretin, a naturally occurring dihydrochalcone glycoside, was identified as a potent antagonist of TGEV. Specifically, we found phloretin effectively inhibited TGEV proliferation in PK-15 cells, dose-dependently reducing the expression of TGEV N protein, mRNA, and virus titer. The anti-TGEV activity of phloretin was furthermore refined to target the internalization and replication stages. Moreover, we also found that phloretin could decrease the expression levels of proinflammatory cytokines induced by TGEV infection. In addition, we expanded the potential key targets associated with the anti-TGEV effect of phloretin to AR, CDK2, INS, ESR1, ESR2, EGFR, PGR, PPARG, PRKACA, and MAPK14 with the help of network pharmacology and molecular docking techniques. Furthermore, resistant viruses have been selected by culturing TGEV with increasing concentrations of phloretin. Resistance mutations were reproducibly mapped to the residue (S242) of main protease (Mpro). Molecular docking analysis showed that the mutation (S242F) significantly disrupted phloretin binding to Mpro, suggesting Mpro might be a potent target of phloretin. In summary, our findings indicate that phloretin is a promising drug candidate for combating TGEV, which may be helpful for developing pharmacotherapies for TGEV and other coronavirus infections.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Phloretin , Transmissible gastroenteritis virus , Virus Replication , Transmissible gastroenteritis virus/drug effects , Animals , Swine , Phloretin/pharmacology , Virus Replication/drug effects , Cell Line , Antiviral Agents/pharmacology , Gastroenteritis, Transmissible, of Swine/drug therapy , Gastroenteritis, Transmissible, of Swine/virology , Cytokines/metabolism , Cytokines/genetics , Virus Internalization/drug effects
2.
Environ Res ; 256: 119252, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815716

ABSTRACT

Bio-ingestion of microplastics poses a global threat to ecosystems, yet studies within nature reserves, crucial habitats for birds, remain scarce despite the well-documented ingestion of microplastics by avian species. Located in Jiangsu Province, China, the Yancheng Wetland Rare Birds Nature Reserve is home to diverse bird species, including many rare ones. This study aimed to assess the abundance and characteristics of microplastics in common bird species within the reserve, investigate microplastic enrichment across different species, and establish links between birds' habitat types and microplastic ingestion. Microplastics were extracted from the feces of 110 birds, with 84 particles identified from 37.27% of samples. Among 8 species studied, the average microplastic abundance ranged from 0.97 ± 0.47 to 43.43 ± 61.98 items per gram of feces, or 1.5 ± 0.87 to 3.4 ± 1.50 items per individual. The Swan goose (Anser cygnoides) exhibited the highest microplastic abundance per gram of feces, while the black-billed gull (Larus saundersi) had the highest abundance per individual. The predominant form of ingested microplastics among birds in the reserve was fibers, with polyethylene being the most common polymer type. Significant variations in plastic exposure were observed among species and between aquatic and terrestrial birds. This study represents the first quantitative assessment of microplastic concentrations in birds within the reserve, filling a crucial gap in research and providing insights for assessing microplastic pollution and guiding bird conservation efforts in aquatic and terrestrial environments.

3.
Inorg Chem ; 63(21): 9967-9974, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38728533

ABSTRACT

Modulating the electronic structure of the electrocatalyst plays a vital role in boosting the electrocatalytic performance of the oxygen evolution reaction (OER). In this work, we introduced a one-step solvothermal method to fabricate 1,1-ferrocene dicarboxylic acid (FcDA)-decorated self-evolved nickel sulfide (Ni3S2) nanosheet arrays on a nickel foam (NF) framework (denoted as FcDA-Ni3S2/NF). Benefiting from the interconnected ultrathin nanosheet architecture, ligand dopants induced and facilitated in situ structural reconstruction, and the FcDA-decorated Ni3S2 (FcDA-Ni3S2/NF) outperformed its singly doped and undoped counterparts in terms of OER activity. The optimized FcDA-Ni3S2/NF self-supported electrode presents a remarkably low overpotential of 268 mV to achieve a current density of 10 mA cm-2 for the OER and demonstrates robust electrochemical stability for 48 h in a 1.0 M KOH electrolyte. More importantly, in situ electrochemical Raman spectroscopy reveals the generation of catalytically active oxyhydroxide species (NiOOH) derived from the surface construction during the OER of pristine FcDA-Ni3S2/NF, contributing significantly to its superior electrocatalytic performance. This study concerns the modulation of electronic structure through ligand engineering and may provide profound insight into the design of cost-efficient OER electrocatalysts.

4.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38565142

ABSTRACT

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Taurine , Taurine/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/metabolism , Signal Transduction , Female , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , STAT3 Transcription Factor/metabolism
5.
Medicine (Baltimore) ; 103(11): e37504, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489696

ABSTRACT

Immune-related cutaneous adverse events (ircAEs) will undermine the patients' quality of lives, and interrupt the antitumor therapy. A clinical proved recipe for external use of clearing heat and removing dampness (Qing-Re-Li-Shi Formula, hereinafter referred to as "QRLSF") is beneficial to the treatment of ircAEs in clinical practice. Our study will elucidate the mechanism of QRLSF against ircAEs based on network pharmacology and molecular docking. The active components and corresponding targets of QRLSF were collected through traditional Chinese medicine systems pharmacology database. GeneCards, online Mendelian inheritance in man, and pharmacogenomics knowledgebase were used to screen the targets of ircAEs. The intersecting targets between drug and disease were acquired by venn analysis. Cytoscape software was employed to construct "components-targets" network. Search tool for the retrieval of interacting genes/proteins database was applied to establish the protein-protein interaction network and then its core targets were identified. Gene ontology and Kyoto encyclopedia of genes and genomes analysis was performed to predict the mechanism. The molecular docking verification of key targets and related phytomolecules was accomplished by AutoDock Vina software. Thirty-nine intersecting targets related to QRLSF against ircAEs were recognized. The analysis of network clarified 5 core targets (STAT3, RELA, TNF, TP53, and NFKBIA) and 4 key components (quercetin, apigenin, luteolin, and ursolic acid). The activity of QRLSF against ircAEs could be attributed to the regulation of multiple biological effects via multi-pathways (PI3K-Akt pathway, cytokine-cytokine receptor interaction, JAK-STAT pathway, chemokine pathway, Th17 cell differentiation, IL-17 pathway, TNF pathway, and Toll-like receptor pathway). The binding activities were estimated as good level by molecular docking. These discoveries disclosed the multi-component, multi-target, and multi-pathway characteristics of QRLSF against ircAEs, providing a new strategy for such medical problem.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Humans , Molecular Docking Simulation , Hot Temperature , Janus Kinases , Phosphatidylinositol 3-Kinases , STAT Transcription Factors , Signal Transduction , Databases, Genetic , Drugs, Chinese Herbal/adverse effects , Medicine, Chinese Traditional
6.
Front Endocrinol (Lausanne) ; 15: 1288326, 2024.
Article in English | MEDLINE | ID: mdl-38348417

ABSTRACT

This is a narrative review of the progress of research on the correlation between insulin resistance and infertility. Insulin resistance (IR) is not only involved in the development of various metabolic diseases, but also affects female reproductive function, and to some extent is closely related to female infertility. IR may increase the risk of female infertility by activating oxidative stress, interfering with energy metabolism, affecting oocyte development, embryo quality and endometrial tolerance, affecting hormone secretion and embryo implantation, as well as affecting assisted conception outcomes in infertile populations and reducing the success rate of assisted reproductive technology treatment in infertile populations. In addition, IR is closely associated with spontaneous abortion, gestational diabetes and other adverse pregnancies, and if not corrected in time, may increase the risk of obesity and metabolic diseases in the offspring in the long term. This article provides a review of the relationship between IR and infertility to provide new ideas for the treatment of infertility.


Subject(s)
Abortion, Spontaneous , Infertility, Female , Insulin Resistance , Pregnancy , Female , Humans , Infertility, Female/etiology , Infertility, Female/therapy , Reproductive Techniques, Assisted , Embryo Implantation
7.
Integr Cancer Ther ; 23: 15347354231226108, 2024.
Article in English | MEDLINE | ID: mdl-38240227

ABSTRACT

OBJECTIVE: In China, grade 2 to 3 immune-related rash will probably lead to the interruption of immunotherapy. Corticosteroid (CS) is the main treatment, but not always effective. The external application of clearing heat and removing dampness, which is represented by Qing-Re-Li-Shi Formula (QRLSF), has been used in our hospital to treat immune-related cutaneous adverse events (ircAEs) for the last 5 years. The purpose of this study was to discuss its efficacy and safety in the treatment of grade 2 to 3 rash. METHODS: A retrospective study of patients with grade 2 to 3 immune-related rash in our hospital from December 2019 to December 2022 was conducted. These patients received QRLSF treatment. Clinical characteristics, treatment outcome, and health-related quality of life (HrQoL) were analyzed. RESULTS: Thirty patients with grade 2 to 3 rash (median onset time: 64.5 days) were included. The skin lesions of 24 cases (80%) returned to grade 1 with a median time of 8 days. The accompanying symptoms were also improved with median time of 3 to 4 days. The addition of antihistamine (AH) drug didn't increase the efficacy of QRLSF (AH + QRLSF: 75.00% vs QRLSF: 83.33%, P = .66). No significant difference was observed in the efficacy of QRLSF treatment regardless of whether patients had previously received CS therapy (untreated population: 88.24% vs treated population: 69.23%, P = .36). During 1-month follow-up, 2 cases (8.33%) underwent relapses. In terms of HrQoL, QRLSF treatment could significantly reduce the median scores of all domains of Skindex-16, including symptoms (39.58 vs 8.33, P < .0001), emotions (58.33 vs 15.48, P < .0001), functioning (46.67 vs 13.33, P < .0001) and composite (52.60 vs 14.06, P < .0001). CONCLUSION: External application of clearing heat and removing dampness was proven to be an effective and safe treatment for such patients. In the future, high-quality trials are required to determine its clinical application in the field of ircAEs.


Subject(s)
B7-H1 Antigen , Exanthema , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/antagonists & inhibitors , Exanthema/chemically induced , Exanthema/drug therapy , Hot Temperature , Ligands , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Quality of Life , Retrospective Studies
8.
Invest Ophthalmol Vis Sci ; 64(15): 32, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133504

ABSTRACT

Purpose: Retinal ganglion cells (RGCs) are the projection neurons of the retina. Loss of RGCs is the cellular basis for vision loss in patients with glaucoma. Finding ways to regenerate RGCs will aid in the development of regenerative therapies for patients with glaucoma. The aim of this study was to examine the ability of Ngn-family transcription factors (TFs) to induce RGC regeneration through reprogramming in vitro and in vivo. Methods: In vitro, lentiviruses were used to deliver Ngn-TFs into mouse embryonic fibroblasts (MEFs). In vivo, mouse pup retina electroporation was used to deliver Ngn-TFs into late-stage retinal progenitor cells (RPCs). Immunofluorescence staining and RNA sequencing were used to examine cell fate reprogramming; patch-clamp recording was used to examine neuronal electrophysiologic functions. Results: In vitro, all three Ngn-TFs, Ngn1, Ngn2, and Ngn3, were able to work alone to reprogram MEFs into RGC-like neurons that resembled RGCs at the transcriptome level, exhibited typical neuronal membrane electrophysiologic properties, and formed functional synaptic communications with retinal neurons. In vivo, Ngn-TFs reprogrammed the differentiation-competent state of late-stage RPCs to generate RGCs. Conclusions: Ngn-TFs are effective in inducing an RGC-like fate both in vitro and in vivo and might be explored further in the future for glaucoma translational applications.


Subject(s)
Glaucoma , Retinal Ganglion Cells , Humans , Animals , Mice , Retinal Ganglion Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fibroblasts/metabolism , Retina/metabolism , Glaucoma/metabolism
9.
Anal Chim Acta ; 1282: 341927, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37923412

ABSTRACT

BACKGROUND: Soluble programmed death-ligand 1 (sPD-L1) is critically involved in breast cancer recurrence and metastasis. However, the clinical application of highly sensitive sPD-L1 assays remains a challenge due to its low abundance in peripheral blood. To address this issue, for the first time, an enzyme-catalyzed electrochemical aptasensing platform was devised, incorporating covalent organic frameworks-gold nanoparticles-antibody-horseradish peroxidase (COFs-AuNPs-Ab-HRP) and polyethyleneimine-functionalized multiwalled carbon nanotubes (MWCNTs-PEI-AuNPs) for the highly specific and ultrasensitive detection of sPD-L1. RESULTS: MWCNTs-PEI-AuNPs possessed an extensive specific surface area and exhibited excellent electrical conductivity, facilitating the immobilization of aptamer and amplifying the signal. COFs modified with AuNPs not only amplified the electrical signal but also proffered a loading platform for the Ab and HRP. The favorable biocompatibility of COFs contributed to the preservation of enzyme activity and stability. HRP acted in synergy with hydrogen peroxide (H2O2) to catalyze the oxidation of hydroquinone (HQ) to benzoquinone (BQ). Subsequently, BQ underwent electrochemical reduction to HQ, inducing an enzymatic redox cycle that amplified the electrochemical signal and enhanced the sensitivity and selectivity of the detection method. The developed aptasensor displayed a liner range for sPD-L1 identification from 1 pg mL-1 to 100 ng mL-1 and the detection limit reached 0.143 pg mL-1 (S/N = 3). SIGNIFICANCE: Paving the way for clinical application, this strategy detected differences in sPD-L1 in cell supernatants and peripheral blood of breast cancer patients with higher sensitivity compared to commercial sPD-L1 ELISA kit. This work demonstrates significant potential in offering reference information for early diagnosis and disease surveillance of breast cancer.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Breast Neoplasms , Metal Nanoparticles , Metal-Organic Frameworks , Nanotubes, Carbon , Humans , Female , B7-H1 Antigen , Breast Neoplasms/diagnosis , Gold , Limit of Detection , Hydrogen Peroxide , Biosensing Techniques/methods , Horseradish Peroxidase , Catalysis , Electrochemical Techniques/methods
10.
Article in English | MEDLINE | ID: mdl-37807418

ABSTRACT

Retinal degeneration diseases affect millions of people worldwide but are among the most difficult eye diseases to cure. Studying the mechanisms and developing new therapies for these blinding diseases requires researchers to have access to many retinal cells. In recent years there has been substantial advances in the field of biotechnology in generating retinal cells and even tissues in vitro, either through programmed sequential stem cell differentiation or direct somatic cell lineage reprogramming. The resemblance of these in vitro-generated retinal cells to native cells has been increasingly utilized by researchers. With the help of these in vitro retinal models, we now have a better understanding of human retinas and retinal diseases. Furthermore, these in vitro-generated retinal cells can be used as donor cells which solves a major hurdle in the development of cell replacement therapy for retinal degeneration diseases, while providing a promising option for patients suffering from these diseases. In this review, we summarize the development of pluripotent stem cell-to-retinal cell differentiation methods, the recent advances in generating retinal cells through direct somatic cell reprogramming, and the translational applications of retinal cells generated in vitro. Finally, we discuss the limitations of the current protocols and possible future directions for improvement.

11.
BMC Infect Dis ; 23(1): 488, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37653382

ABSTRACT

BACKGROUND: Pulmonary tuberculosis (PTB) complicated with extrapulmonary tuberculosis (EPTB) infection can aggravate the disease, but there have been few reports. METHODS: Retrospective analysis was used to collect the clinical data of PTB patients with pathogen positive in a teaching hospital from 2017 to 2021. We describe the incidence, the invasive site of EPTB patients, and analyze the infection risk factors for PTB with EPTB by univariate and multivariate logistic regression models. We also compared the complications, disease burden with chi-square test and rank-sum test. RESULTS: A total of 1806 PTB were included, of which 263 (14.6%) were complicated with EPTB. The common invasive sites for EPTB were neck lymph nodes (16.49%), intestines (16.13%), and meninges (10.75%). Age ≤ 40 (OR = 1.735; 95%CI [1.267-2.376]; P = 0.001), malnutrition (OR = 2.029; 95%CI [1.097-3.753]; P = 0.022), anemia (OR = 1.739; 95%CI[1.127-2.683]; P = 0.012), and osteoporosis (OR = 4.147; 95%CI [1.577-10.905]; P = 0.004) were all independent risk factors for PTB infection with EPTB. The incidence of extrathoracic hydrothorax, intestinal bacterial infection, urinary tract bacterial infection, and abdominal bacterial infection were higher in patients with PTB with EPTB. PTB with EPTB patients also had longer median hospitalization durations (19 vs. 14 days), during which time they incurred higher total costs, laboratory test costs, imaging examination costs, and drug use costs. CONCLUSION: This study found important risk factors for PTB complicated with EPTB, such as age ≤ 40, malnutrition, anemia, and osteoporosis. PTB with EPTB patients have more extrapulmonary complications and higher hospitalization disease burden.


Subject(s)
Intraabdominal Infections , Tuberculosis, Extrapulmonary , Tuberculosis, Pulmonary , Humans , Retrospective Studies , Tuberculosis, Pulmonary/complications , Tuberculosis, Pulmonary/epidemiology , China/epidemiology , Hospitals, Teaching
12.
Prev Med ; 175: 107674, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604289

ABSTRACT

Numerous studies have revealed associations between high intake of whole grains and reduced risk of various cancers. Yet, in recent decades, the traditional Chinese diets have been challenged by reduction in whole grains and increase in refined grains. To assess the impact of this dietary transition on cancer prevention, we analyzed the time trend of whole grain intake using nationally representative sampling data of over 15 thousand individuals from the China Health and Nutrition Survey. We applied the comparative risk assessment method to estimate the population attributable fraction of cancers due to insufficient whole grain intake from 1997 to 2011 and projected the trend of whole grain intake and the associated burden of cancers to 2035. We found a significant decrease of approximately 59% of whole grain intake in the Chinese population from 1997 to 2011. Compared with 1997, insufficient intake of whole grains was responsible for 9940 more cases of breast cancer, 12,903 more cases of colorectal cancer and 434 more cases of pancreatic cancer in 2011. Our projections suggest that if every Chinese would consume 125 g whole grain per day as recommended by the latest Chinese Dietary Guidelines, 0.63% bladder cancer, 8.98% breast cancer, 15.85% colorectal cancer, 3.86% esophageal cancer, 2.52% liver cancer and 2.22% pancreatic cancer (totaling 186,659 incident cases) could theoretically be averted by 2035. Even if everyone maintained the 2011 whole grain intake level, an estimated 8.38% of cancer events could still be prevented by 2035.

13.
Langmuir ; 39(29): 10033-10046, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37433143

ABSTRACT

Waterborne polyurethane (WPU) has attracted significant interest as a promising alternative to solvent-based polyurethane (SPU) due to its positive impact on safety and sustainability. However, significant limitations of WPU, such as its weaker mechanical strength, limit its ability to replace SPU. Triblock amphiphilic diols are promising materials to enhance the performance of WPU due to their well-defined hydrophobic-hydrophilic structures. Yet, our understanding of the relationship between the hydrophobic-hydrophilic arrangements of triblock amphiphilic diols and the physical properties of WPU remains limited. In this study, we show that by controlling the micellar structure of WPU in aqueous solution via the introduction of triblock amphiphilic diols, the postcuring efficiency and the resulting mechanical strength of WPU can be significantly enhanced. Small-angle neutron scattering confirmed the microstructure and spatial distribution of hydrophilic and hydrophobic segments in the engineered WPU micelles. In addition, we show that the control of the WPU micellar structure through triblock amphiphilic diols renders WPU attractive in the applications of controlled release, such as drug delivery. Here, curcumin was used as a model hydrophobic drug, and the drug release behavior from WPU-micellar-based drug delivery systems was characterized. It was found that curcumin-loaded WPU drug delivery systems were highly biocompatible and exhibited antibacterial properties in vitro. Furthermore, the sustained release profile of the drug was found to be dependent on the structure of the triblock amphiphilic diols, suggesting the possibility of controlling the drug release profile via the selection of triblock amphiphilic diols. This work shows that by shedding light on the structure-property relationship of triblock amphiphilic diol-containing WPU micelles, we may enhance the applicability of WPU systems and move closer to realizing their promising potential in real-life applications.

14.
Support Care Cancer ; 31(7): 375, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37273007

ABSTRACT

BACKGROUND: Multikinase inhibitors (MKIs) treatment has been proven as a powerful strategy in cancer therapy. However, it is greatly hampered by its common adverse effect known as hand-foot skin reaction (HFSR), especially in patients with moderate-to-severe HFSR. OBJECTIVE: To investigate the clinical characteristics, histopathological features, treatment response, and bio-indicators of HFSR. METHODS: We retrospectively reviewed the medical records of 102 patients with moderate-to-severe HFSR resulting from MKIs therapy. RESULTS: The median time to development of moderate-to-severe HFSR was 18 days, which would be significantly affected by the type of MKIs and the history of HFSR. Notably, we found that HFSR was classified into three consecutive stages: erythematous lesion, yellow hyperkeratotic lesion with surrounding erythema, and hyperkeratotic lesion. Inflammation was observed in the first two stages of HFSR, but disappeared in the third stage; in contrast, the hyperkeratosis gradually became thicker from stage one to stage three. Moreover, topical medications were demonstrated as an effective therapy for HFSR, among which, the topical steroids and urea ointment treatment response rate was 37.14%, the Shouzu Ning Decoction (SND) treatment response rate was 65%, and the SND in combination with urea ointment treatment response rate was 75%, meanwhile, systemic therapies did not improve the therapeutic efficacy of topical medications alone. In addition, the serum levels of HMGB1 were found to be a potential indicator for tracking the healing process as well as predicting the prognosis of HFSR. CONCLUSION: This study revealed the potential factors affecting the development of HFSR, evaluated the therapeutic response towards different strategies for treating HFSR, and identified a potential prognostic indicator of HFSR.


Subject(s)
Hand-Foot Syndrome , Protein Kinase Inhibitors , Humans , Retrospective Studies , Ointments/therapeutic use , Protein Kinase Inhibitors/adverse effects , Treatment Outcome , Prognosis , Urea/therapeutic use , Hand-Foot Syndrome/drug therapy , Phenylurea Compounds/adverse effects
15.
Transl Oncol ; 35: 101711, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37327583

ABSTRACT

BACKGROUND: Immediate early response 3 (IER3) plays a vital role in many tumors. This study aims to explore the function and mechanism of IER3 in Acute myeloid leukemia (AML). METHODS: The expression of IER3 in AML was performed by bioinformatics analysis. CCK-8 proliferation assay, flow cytometry cycle assay, clone formation assay, and tumorigenic ability were used to investigate the effect of IER3 on AML cells. Unbiased label-free quantitative proteomics and label-free quantitative phosphoproteomics analysis were performed. The regulatory relationship between SATB1(Special AT-rich sequence binding protein 1) and IER3 was investigated by Real time-PCR, Western blot, Chromatin immunoprecipitation (CHIP), and PCR. RESULTS: The result indicated that the prognosis of the high IER3 expression group was significantly worse than that of the low expression group. CCK-8 assay showed that IER3 enhanced the proliferation ability. Cell cycle analysis showed IER3 could promote HL60 cells to enter the S phase of DNA synthesis from the quiescent phase. IER3 could stimulate HEL cells to enter mitosis. Clone-formation experiments suggested that IER3 enhanced clonogenic ability.IER3 promoted the tumorigenesis of AML. Further experimental investigation revealed that IER3 promoted autophagy and induced the occurrence and development of AML by negatively regulating the phosphorylation activation of AKT/mTOR pathway. SATB1 was found to bind to the promoter region of IER3 gene and negatively regulate its transcription. CONCLUSION: IER3 could promote the development of AML and induce autophagy of AML cells by negatively regulating the phosphorylation and activation of AKT/mTOR. By the way, SATB1 may negatively target regulates IER3 transcription.

16.
Biol Open ; 12(6)2023 06 15.
Article in English | MEDLINE | ID: mdl-37259881

ABSTRACT

As a member of the fibronectin leucine-rich transmembrane (flrt) gene family, fibronectin leucine-rich transmembrane 2 (flrt2) is strongly expressed in a subset of sclerotome cells, and the resultant protein interacts with FGFR1 in the FGF signaling pathway during development. Studies on flrt2 have focused mainly on its roles in the brain, heart and chondrogenesis. However, reports on its expression and function in the zebrafish retina are lacking. Here, we detected the high expression of flrt2 in zebrafish retina using in situ hybridization technique and developed an flrt2-knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. Quantitative real-time PCR was used to measure the expression levels of flrt2, which results in an approximately 60% mRNA reduction. The flrt2-KO zebrafish eyes' altered morphological, cellular, and molecular events were identified using BrdU labeling, TUNEL assay, immunofluorescent staining, fluorescent dye injection and RNA sequencing. Abnormal eye development, known as microphthalmia, was found in flrt2-KO larvae, and the retinal progenitor cells exhibited increased apoptosis, perhaps owing to the combined effects of crx, neurod4, atoh7, and pcdh8 downregulation and Casp3a and Caspbl upregulation. In contrast, the retinal neural development, as well as retinal progenitor cell differentiation and proliferation, were not affected by the flrt2 deletion. Thus, flrt2 appears to play important roles in retinal development and function, which may provide the basis for further investigations into the molecular mechanisms of retinal development and evolution.


Subject(s)
Fibronectins , Microphthalmos , Animals , Leucine , Membrane Glycoproteins/genetics , Microphthalmos/genetics , Zebrafish/genetics , Zebrafish/metabolism
17.
Front Med (Lausanne) ; 10: 1122472, 2023.
Article in English | MEDLINE | ID: mdl-37007785

ABSTRACT

Aim: To explore obstetric nurses and midwifery professionals' experiences with the Perinatal Bereavement Care Training Programme (PBCTP) after implementation. Design: A qualitative descriptive design was used. Method: This qualitative study was conducted at a tertiary level maternity hospital in China. The PBCTP was implemented at Women's Hospital School of Medicine, Zhejiang University from March to May 2022. A total of 127 nurses and 44 midwives were invited to participate in the training. Obstetric nurses and midwives studied a 5-module training programme comprised of eight online theoretical courses and submitted a reflective journal after each session. Semi-structured interviews were conducted with 12 obstetric nurses and four midwives from May to July 2022 as a post-intervention evaluation. Thematic analysis was used in data analysis. Findings: A total of 16 participants in this study ranged in age from 23 to 40 years [mean age (SD), 30 (4) years]. Six main themes within participants' experiences of PBCTP intervention were identified: participants' aims of undertaking the training; personal growth and practice changes after training; the most valuable training content; suggestions for training improvement; directions for practice improvement; influencing factors of practice optimization. Conclusion: Nursing and midwifery professionals described the PBCTP as satisfying their learning and skills enhancement needs and supporting positive changes in their care providing for bereaved families. The optimized training programme should be widely applied in the future. More efforts from the hospitals, managers, obstetric nurses, and midwives are needed to jointly contribute to forming a uniform care pathway and promoting a supportive perinatal bereavement care practice.

18.
NMR Biomed ; 36(8): e4931, 2023 08.
Article in English | MEDLINE | ID: mdl-36939957

ABSTRACT

Currently, many prostate cancer patients, detected through the prostate specific antigen test, harbor organ-confined indolent disease that cannot be differentiated from aggressive cancer according to clinically and pathologically known measures. Spermine has been considered as an endogenous inhibitor for prostate-confined cancer growth and its expression has shown correlation with prostate cancer growth rates. If established clinically, measurements of spermine bio-synthesis rates in prostates may predict prostate cancer growth and patient outcomes. Using rat models, we tested the feasibility of quantifying spermine bio-synthesis rates with 13 C NMR. Male Copenhagen rats (10 weeks, n = 6) were injected with uniformly 13 C-labeled L-ornithine HCl, and were sacrificed in pairs at 10, 30, and 60 min after injection. Another two rats were injected with saline and sacrificed at 30 min as controls. Prostates were harvested and extracted with perchloric acid and the neutralized solutions were examined by 13 C NMR at 600 MHz. 13 C NMR revealed measurable ornithine, as well as putrescine-spermidine-spermine syntheses in rat prostates, allowing polyamine bio-synthetic and ornithine bio-catabolic rates to be calculated. Our study demonstrated the feasibility of 13 C NMR for measuring bio-synthesis rates of ornithine to spermine enzymatic reactions in rat prostates. The current study established a foundation upon which future investigations of protocols that differentiate prostate cancer growth rates according to the measure of ornithine to spermine bio-synthetic rates may be developed.


Subject(s)
Prostatic Neoplasms , Spermine , Male , Rats , Animals , Humans , Spermine/metabolism , Prostate , Polyamines/metabolism , Ornithine/metabolism , Ornithine/pharmacology
19.
Virulence ; 14(1): 2180951, 2023 12.
Article in English | MEDLINE | ID: mdl-36827455

ABSTRACT

Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart failure and sudden cardiac death and is invariably caused by myocardial viral infection following active inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or immunological insults to the heart may play a role. Cellular and mouse experimental models that utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the different stages of development of viral myocarditis were discussed, concentrating on the mechanisms of innate and adaptive immunity in the development of CVB3-induced myocarditis.


Subject(s)
Coxsackievirus Infections , Myocarditis , Animals , Mice , Myocardium , Heart , Enterovirus B, Human , Disease Models, Animal
20.
Sci Adv ; 9(6): eadf5509, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36753543

ABSTRACT

Endotoxin is a deadly pyrogen, rendering it crucial to monitor with high accuracy and efficiency. However, current endotoxin detection relies on multistep processes that are labor-intensive, time-consuming, and unsustainable. Here, we report an aptamer-based biosensor for the real-time optical detection of endotoxin. The endotoxin sensor exploits the distance-dependent scattering of gold nanoparticles (AuNPs) coupled to a gold nanofilm. This is enabled by the conformational changes of an endotoxin-specific aptamer upon target binding. The sensor can be used in an ensemble mode and single-particle mode under dark-field illumination. In the ensemble mode, the sensor is coupled with a microspectrometer and exhibits high specificity, reliability (i.e., linear concentration to signal profile in logarithmic scale), and reusability for repeated endotoxin measurements. Individual endotoxins can be detected by monitoring the color of single AuNPs via a color camera, achieving single-molecule resolution. This platform can potentially advance endotoxin detection to safeguard medical, food, and pharmaceutical products.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Endotoxins , Gold/chemistry , Reproducibility of Results , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...