Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Ann Rheum Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38724075

ABSTRACT

OBJECTIVE: Recent studies indicate that N-acetyltransferase 10 (NAT10)-mediated ac4C modification plays unique roles in tumour metastasis and immune infiltration. This study aimed to uncover the role of NAT10-mediated ac4C in fibroblast-like synoviocytes (FLSs) functions and synovial immune cell infiltration in rheumatoid arthritis (RA). METHODS: FLSs were obtained from active established patients with RA. Protein expression was determined by western blotting or immunohistochemistry or multiplexed immunohistochemistry. Cell migration was measured using a Boyden chamber. ac4C-RIP-seq combined with RNA-seq was performed to identify potential targets of NAT10. RNA immunoprecipitation was used to validate the interaction between protein and mRNA. NAT10 haploinsufficiency, inhibitor remodelin or intra-articular Adv-NAT10 was used to suppress arthritis in mice with delayed-type hypersensitivity arthritis (DYHA) and collagen II-induced arthritis (CIA) and rats with CIA. RESULTS: We found elevated levels of NAT10 and ac4C in FLSs and synovium from patients with RA. NAT10 knockdown or specific inhibitor treatment reduced the migration and invasion of RA FLSs. Increased NAT10 level in the synovium was positively correlated with synovial infiltration of multiple types of immune cells. NAT10 inhibition in vivo attenuated the severity of arthritis in mice with CIA and DTHA, and rats with CIA. Mechanistically, we explored that NAT10 regulated RA FLS functions by promoting stability and translation efficiency of N4-acetylated PTX3 mRNA. PTX3 also regulated RA FLS aggression and is associated with synovial immune cell infiltration. CONCLUSION: Our findings uncover the important roles of NAT10-mediated ac4C modification in promoting rheumatoid synovial aggression and inflammation, indicating that NAT10 may be a potential target for the treatment of RA, even other dysregulated FLSs-associated disorders.

2.
Front Nutr ; 11: 1386646, 2024.
Article in English | MEDLINE | ID: mdl-38746935

ABSTRACT

Background: Observational studies have shown that micronutrients can affect the occurrence of frailty. However, it is not clear whether there is a causal relationship between the two. This study aimed to explore the causal relationship between circulating micronutrient levels and frailty risk using a two-sample Mendelian randomization (TSMR) approach. Methods: We gathered and screened instrumental variables (IVs) for six circulating micronutrients, including vitamin B12, vitamin B6, folate, vitamin C, vitamin D, and vitamin E, from published genome-wide association studies (GWAS) and the IEU OpenGWAS open database. Summary statistics for frailty were obtained from a GWAS meta-analysis, including the UK Biobank and TwinGene (N = 175,226). We performed two independent TSMR analyses and a meta-analysis based on the two independent MR estimates to assess the causal relationship between circulating micronutrientn and frailty. Results: Our study found, no causal relationship between genetically predicted vitamin D (ß = -0.059, p = 0.35), vitamin B6 (ß = 0.006, p = 0.80), vitamin E (ß = -0.011, p = 0.79), vitamin C (ß = -0.044, p = 0.06), vitamin B12 (ß = -0.027, p = 0.37), and folate (ß = 0.029, p = 0.17), with frailty. Conclusion: This study showed that these six micronutrients did not reduce the risk of developing frailty. However, we think it is necessary further to investigate the relationship and mechanisms between micronutrients and frailty using methods such as randomized controlled trials.

3.
Article in English | MEDLINE | ID: mdl-38607213

ABSTRACT

Objective: The objective of this study was to examine the impact of hemiplegic limb rehabilitation training on the nursing care of individuals who have experienced a stroke. Methods: Seventy-six stroke patients from Zhangjiagang Hospital of Traditional Chinese Medicine participated in a study comparing the effects of different nursing interventions. The patients were divided into 2 groups: a control that received standard nursing care and an observation group that received rehabilitation training in addition to standard care. The researchers analyzed the effects on limb movement, daily activities, muscle recovery, and nursing satisfaction between the 2 groups. Results: The nursing intervention in the observation group showed a significantly higher effectiveness rate of 94.74% compared to the control group's rate of 55.26% (P < .05). Prior to the intervention, there was no notable difference in limb movement scores between the 2 groups (P > .05). Similarly, there was no significant difference in Barthel Index scores between the 2 groups before the intervention (P > .05). However, after the intervention, the Bathel Index score in the observation group was significantly higher than that of the control group (P < .05). Conclusion: Hemiplegic limb rehabilitation training nursing care positively impacts stroke patients, improving physical mobility, muscle strength, and overall quality of life. This method should be prioritized and implemented in clinical practice.

4.
Phytomedicine ; 129: 155571, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677270

ABSTRACT

BACKGROUND: Repairing the intestinal mucosal barrier and reducing persistent inflammation is the key strategies for the treatment of ulcerative colitis (UC). Zhilining Formula (ZLN), composed of Andrographis herba (AH), Sophorae flavescentis radix (SFA), and Aucklandia radix (AR), is a well-tried formula for the clinical treatment of enteritis and dysentery in China, and its mechanism has not been clarified. PURPOSE: This study aims to investigate the effect of ZLN on UC and elucidate its underlying mechanism via metabolomics analysis and experimental verification. METHODS: The effect of ZLN on UC was evaluated in a 3.5 % dextran sulfate sodium (DSS)-induced mice model via the body weight, disease activity index (DAI), colon length, colonic histopathology, expression of inflammation factors, and intestinal barrier in mice. An UPLC-Q-TOF-MS/MS approach-based metabolomics analysis was performed to preliminary explore the mechanism of ZLN in colitis. Based on the results of metabolomics analysis, the expression of related protein or mRNA in AHR/NF-κBp65 axis was determined by qPCR and western blotting. Moreover, the potential interactions of active ingredients of ZLN with NF-κBp65 and AHR were investigated in vitro through using agonists and inhibitors of NF-κBp65 and AHR, respectively. RESULTS: ZLN alleviated body weight loss and colonic shortening in colitis mice, and down-regulated the DAI and histopathological score as well. ZLN also decreased the levels of inflammatory factors (MPO, IL-1ß, TNF-α and IL-18), protected goblet cell function and intestinal barrier in DSS-induced mice. Metabolomics results revealed that 36 metabolites that were significantly altered in mice after induction with DSS, which involved in 16 metabolic pathways, including biosynthesis of unsaturated fatty acid, phenylalanine metabolism, arachidonic acid (AA) metabolism, tryptophan (Trp) metabolism, retinol metabolism, and sphingolipid metabolism, etc. ZLN restored 26 different metabolites (DEMs) of them to normal-like levels, indicating ZLN regulated the AA metabolism and Trp-metabolism in UC mice, which hinted its potential pharmacological mechanism related to AHR/NF-κBp65 axis. We further confirmed that ZLN could restrain the activation of NF-κBp65 signaling pathway and then inhibit the expression of its mediated inflammatory cytokines, such as IL-1ß, TNF-α, COX-2 and IL17A. Moreover, ZLN increased nuclear translocation of AHR and IL22 expression, which is an important regulatory signal for intestinal mucosal barrier repaired. Finally, we elucidated in vitro that the active ingredients of ZLN exerted anti-colitis effects by activating AHR and simultaneously inhibiting NF-κBp65. CONCLUSION: ZLN relieved colitis by AHR/NF-κBp65 axis. This study highlighted the important role of AHR and NF-κBp65 in UC, and provided a theoretical basis for the application of ZLN.


Subject(s)
Dextran Sulfate , Disease Models, Animal , Drugs, Chinese Herbal , Intestinal Mucosa , Receptors, Aryl Hydrocarbon , Transcription Factor RelA , Animals , Receptors, Aryl Hydrocarbon/metabolism , Drugs, Chinese Herbal/pharmacology , Transcription Factor RelA/metabolism , Male , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice, Inbred C57BL , Humans , Colon/drug effects , Colon/pathology , Colon/metabolism , Colitis/drug therapy , Colitis/chemically induced , Metabolomics , Signal Transduction/drug effects , Basic Helix-Loop-Helix Transcription Factors
5.
J Ethnopharmacol ; 327: 118014, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38460576

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY: This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS: A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-ß1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS: RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-ß1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS: RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.


Subject(s)
Hyperuricemia , Panax , Renal Insufficiency, Chronic , Mice , Animals , Hyperuricemia/drug therapy , Hyperuricemia/pathology , Transforming Growth Factor beta1 , Uric Acid , Creatinine , Ki-67 Antigen , Obesity/drug therapy , Fibrosis , Panax/chemistry , Cadherins , Nitrogen , Lipids , Urea
6.
Immunology ; 172(2): 295-312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453210

ABSTRACT

Hyperactivation of the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway has been shown to be associated with the development of a variety of inflammatory diseases, and the discovery of an inhibitor of the cGAS-STING signalling pathway holds great promise in the therapeutic interventions. Epimedium flavonoid (EF), a major active ingredient isolated from the medicinal plant Epimedium, has been reported to have good anti-inflammatory activity, but its exact mechanism of action remains unclear. In the present study, we found that EF in mouse bone marrow-derived macrophages (BMDMs), THP-1 (Tohoku Hospital Pediatrics-1) as well as in human peripheral blood mononuclear cells (hPBMC) inhibited the activation of the cGAS-STING signalling pathway, which subsequently led to a decrease in the expression of type I interferon (IFN-ß, CXCL10 and ISG15) and pro-inflammatory cytokines (IL-6 and TNF-α). Mechanistically, EF does not affect STING oligomerization, but inhibits the formation of functional STING signalosome by attenuating the interaction of interferon regulatory factor 3 (IRF3) with STING and TANK-binding kinase 1 (TBK1). Importantly, in vivo experiments, EF has shown promising therapeutic effects on inflammatory diseases mediated by the cGAS-STING pathway, which include the agonist model induced by DMXAA stimulation, the autoimmune inflammatory disease model induced by three prime repair exonuclease 1 (Trex1) deficiency, and the non-alcoholic steatohepatitis (NASH) model induced by a pathogenic amino acid and choline deficiency diet (MCD). To summarize, our study suggests that EF is a potent potential inhibitor component of the cGAS-STING signalling pathway for the treatment of inflammatory diseases mediated by the cGAS-STING signalling pathway.


Subject(s)
Epimedium , Flavonoids , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Animals , Signal Transduction/drug effects , Humans , Mice , Flavonoids/pharmacology , Epimedium/chemistry , Interferon Regulatory Factor-3/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Mice, Inbred C57BL , Cytokines/metabolism , THP-1 Cells , Protein Serine-Threonine Kinases/metabolism , Anti-Inflammatory Agents/pharmacology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects
7.
Front Psychiatry ; 15: 1323801, 2024.
Article in English | MEDLINE | ID: mdl-38410679

ABSTRACT

Background: The gut-brain axis and gut microbiota have emerged as key players in emotional disorders. Recent studies suggest that alterations in gut microbiota may impact psychiatric symptoms through brain miRNA along the gut-brain axis. However, direct evidence linking gut microbiota to the pathophysiology of generalized anxiety disorder (GAD) via brain miRNA is limited. In this study, we explored the effects of fecal microbiota transplantation (FMT) from GAD donors on gut microbiota and prefrontal cortex miRNA in recipient mice, aiming to understand the relationship between these two factors. Methods: Anxiety scores and gut microbiota composition were assessed in GAD patients, and their fecal samples were utilized for FMT in C57BL/6J mice. Anxiety-like behavior in mice was evaluated using open field and elevated plus maze tests. High-throughput sequencing of gut microbiota 16S rRNA and prefrontal cortex miRNA was performed. Results: The fecal microbiota of GAD patients exhibited a distinct microbial structure compared to the healthy group, characterized by a significant decrease in Verrucomicrobia and Akkermansia, and a significant increase in Actinobacteria and Bacteroides. Subsequent FMT from GAD patients to mice induced anxiety-like behavior in recipients. Detailed analysis of gut microbiota composition revealed lower abundances of Verrucomicrobia, Akkermansia, Bifidobacterium, and Butyricimonas, and higher abundances of Deferribacteres, Allobaculum, Bacteroides, and Clostridium in mice that received FMT from GAD patients. MiRNA analysis identified five key miRNAs affecting GAD pathogenesis, including mmu-miR-10a-5p, mmu-miR-1224-5p, mmu-miR-218-5p, mmu-miR-10b-5p, and mmu-miR-488-3p. Notably, mmu-miR-488-3p showed a strong negative correlation with Verrucomicrobia and Akkermansia. Conclusion: This study demonstrates that anxiety-like behavior induced by human FMT can be transmitted through gut microbiota and is associated with miRNA expression in the prefrontal cortex. It is inferred that the reduction of Akkermansia caused by FMT from GAD patients leads to the upregulation of mmu-miR-488-3p expression, resulting in the downregulation of its downstream target gene Creb1 and interference with its related signaling pathway. These findings highlight the gut microbiota's crucial role in the GAD pathophysiology.

8.
Article in English | MEDLINE | ID: mdl-38366876

ABSTRACT

Sarcopenia is among the most common musculoskeletal illnesses, yet its underlying biochemical mechanisms remain incompletely understood. In this study, we used Mendelian randomization (MR) to investigate the causal relationship between the genetically determined blood metabolites and sarcopenia, with the overall objective of identifying likely molecular pathways for sarcopenia. We used 2-sample MR to investigate the effects of blood metabolites on sarcopenia-related traits. 452 metabolites were exposure, and 3 sarcopenia-related traits as the outcomes: handgrip strength, appendicular lean mass, and walking pace. The inverse-variance weighted (IVW) causal estimates were determined. For sensitivity analysis, methods such as MR-Egger regression, the weighted median, the weighted mode, and the heterogeneity test were used. Additionally, for complementation, we performed replication, meta-analysis, and metabolic pathway analyses. Candidate biomarkers were defined by meeting one of the following criteria: (1) significant metabolites are defined as pIVW < pBonferroni [1.11 × 10-4 (.05/452)]; (2) strong metabolites are defined as 4 MR methods p < .05; and (3) suggestive metabolites are defined as passing sensitivity analysis. Three metabolites (creatine, 1-arachidonoylglycerophosphocholine, and pentadecanoate [15:0]) with significant causality, 3 metabolites (glycine, 1-arachidonoylglycerophosphocholine, and epiandrosterone sulfate) with strong causality, and 25 metabolites (including leucylleucin, pyruvic acid, etc.) with suggestive causality were associated with sarcopenia-related traits. After further replication analyses and meta-analysis, these metabolites maintained substantial effects on sarcopenia-related traits. We additionally identified 14 important sarcopenia-related trait metabolic pathways. By combining metabolomics with genomics, these candidate metabolites and metabolic pathways identified in our study may provide new clues regarding the mechanisms underlying sarcopenia.


Subject(s)
Hand Strength , Sarcopenia , Humans , Mendelian Randomization Analysis , Sarcopenia/genetics , Metabolome , Phenotype , Genome-Wide Association Study
9.
BMC Ophthalmol ; 24(1): 33, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254041

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of peribulbar triamcinolone acetonide injection for treating ocular myasthenia gravis (OMG), with a comparison of traditional oral drug therapy. METHODS: A total of 22 patients with OMG who received periocular triamcinolone acetonide injection (initially 20 mg weekly, then once per month later if symptoms were improved) from July 2019 to July 2022 were evaluated by a comparison of symptom degree before and after treatment. Adverse reactions were also monitored during the period of treatment. The period of follow-up was more than 6 months. Additionally, a comparison of the treatment efficacy between this periocular injection and traditional oral administration was performed in OMG patients. RESULTS: After 4 weeks of treatment, the degree of ptosis in OMG patients decreased to -3.00 ± 0.69, compared to the value (-0.86 ± 1.32) before treatment. The degree of ophthalmoplegia also decreased from 3.12 ± 0.72 to 0.86 ± 0.88 (P < 0.001) after treatment. The achievement rates of minimal manifestations status (MMS)for ptosis and ophthalmoplegia after 4 week-treatment were 86.3% and 75%, respectively, while they were 50% and 30% in patients with traditional oral administration. There was statistically significant difference only in MMS (rather than symptom relief rate and generalization conversion rate) between two groups. No serious complications (except for intraorbital hematoma) were found in OMG patients during the treatment period. CONCLUSION: Repeated peribulbar injection of triamcinolone acetonide can effectively alleviate the initial symptoms of OMG patients. However, the evaluation of its long-term efficacy is still needed. CLINICAL TRIAL REGISTRY: This study has been clinically registered by Chinese Clinical Trial Registry (ChiCTR), first trial registration date:05/07/2019, registration number: ChiCTR1900024285.


Subject(s)
Blepharoptosis , Myasthenia Gravis , Ophthalmoplegia , Humans , Blepharoptosis/chemically induced , Blepharoptosis/drug therapy , Myasthenia Gravis/drug therapy , Research Design , Triamcinolone Acetonide/adverse effects
10.
J Ethnopharmacol ; 325: 117807, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38280661

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease affecting the colon and rectum with an etiology that remains elusive. Traditional Chinese medicine (TCM) has been widely used on long-term UC treatment to better maintain the efficacy than traditional aminosalicylic acid or glucocorticosteroids and to ease financial burden of patients. Qingchang Wenzhong Decoction (QCWZD) is a modern TCM decoction with established clinical efficacy but the mechanism of its protection on intestinal barrier function remains unclear. AIM OF THE STUDY: Current findings highlight that the activation of the hypoxia inducible factor (HIF) pathway can facilitate the repair of intestinal epithelium barrier. This study is to investigate the protective effects of QCWZD and its HIF-targeted ingredients on hypoxia-dependent intestinal barrier. METHODS: The mice model of UC was induced by dextran sulfate sodium (DSS). Disease activity index (DAI) and histopathology scores and colon length were used to measure the severity of colitis. The DAO activity in serum and protein expression of tight junction (TJ) proteins were detected to explore the function of intestinal barrier. The protein levels of HIF-1α and its downstream gene heme oxygenase-1 (HO-1) were measured as well. HIF-targeted active ingredients in QCWZD were selected by network pharmacology and molecular docking. Protective effects of six constituents on HIF-related anti-oxidative and barrier protective pathway were evaluated by lipopolysaccharide (LPS)-induced HT29 and RAW264.7 cells, through the measurement of the production of ROS and mRNA level of pro-inflammatory cytokines. HIF-1α knockdown was carried out to explore the correlation of protection effects with HIF-related pathway of the active ingredients. RESULTS: QCWZD effectively alleviated colitis induced by DSS and demonstrated a protective effect on intestinal barrier function by upregulating HIF-related pathways. Six specific ingredients in QCWZD, targeting HIF, successfully reduced the production of cellular ROS and proinflammatory cytokines in LPS-induced cells. It is noteworthy that the barrier protection provided by these molecules is intricately linked with the HIF-related pathway. CONCLUSIONS: This study elucidates the HIF-related molecular mechanism of QCWZD in protecting the function of the epithelial barrier. Six compounds targeting the activation of the HIF-dependent pathway were demonstrated to unveil a novel therapeutic approach for managing UC.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Animals , Humans , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Reactive Oxygen Species , Molecular Docking Simulation , Lipopolysaccharides , Colitis/chemically induced , Cytokines/metabolism , Hypoxia
11.
Compr Rev Food Sci Food Saf ; 23(1): e13276, 2024 01.
Article in English | MEDLINE | ID: mdl-38284605

ABSTRACT

Soy protein gel can be developed into a variety of products, ranging from traditional food (e.g., tofu) to newly developed food (e.g., soy yogurt and meat analog). So far, efforts are still needed to be made on modifying the gel properties of soy protein for improving its sensory properties as animal protein-based food substitutes. Furthermore, there is always a need to regulate its gel properties for designing novel and tailored products of soy protein gels due to the fast-growing plant protein-based product market. This review gave an emphasis on the latest modification strategies and applications of gel properties of soy protein. The modifying methods of soy protein gel properties were reviewed from an aspect of composition or processing. Compositional modification included changing protein composition and gelling conditions and using additives, whereas processing strategies can be achieved through physical, chemical, and enzymatic treatments. Several compositional modification and processing strategies have been both proven to alter the gel properties of soy protein effectively. So far, soy protein gel has been applied in the field of food and biomedicine. In the future, more mechanistic studies on the modification methods are still needed to facilitate the full application of soy protein gel.


Subject(s)
Soy Foods , Soybean Proteins , Animals , Soybean Proteins/chemistry , Gels/chemistry , Plant Proteins
12.
Cancer Causes Control ; 35(1): 185-191, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37676616

ABSTRACT

PURPOSE: Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra). METHODS: A pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine. RESULTS: Our proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra's estimated error of 20.44%. This 40% gain in accuracy was statistically significant (p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram). CONCLUSION: We present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field.


Subject(s)
Breast Neoplasms , Pectoralis Muscles , Female , Humans , Pectoralis Muscles/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Mammography/methods , Breast/diagnostic imaging , Algorithms , Breast Neoplasms/diagnostic imaging
13.
Front Endocrinol (Lausanne) ; 14: 1268865, 2023.
Article in English | MEDLINE | ID: mdl-38075046

ABSTRACT

Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0% of the world's population. Bile acids are synthesized by hepatocytes and modulate metabolism via farnesoid X receptor (FXR), G protein-coupled receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract but also extend to tissues and organs such as the brain, where they regulate emotional centers and nerves. A rise in serum bile acid levels can promote the interaction between central FXR and TGR5 across the blood-brain barrier or activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals to the brain via these indirect pathways. This review aimed to summarize advancements in the metabolism of bile acids and the physiological functions of their receptors in various tissues, with a specific focus on their regulatory roles in brain function. The contribution of bile acids to anxiety via sending signals to the brain via direct or indirect pathways was also discussed. Different bile acid ligands trigger distinct bile acid signaling cascades, producing diverse downstream effects, and these pathways may be involved in anxiety regulation. Future investigations from the perspective of bile acids are anticipated to lead to novel mechanistic insights and potential therapeutic targets for anxiety disorders.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Humans , Receptors, G-Protein-Coupled/metabolism , Intestines , Bile Acids and Salts , Anxiety Disorders
14.
Int J Mol Sci ; 24(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37958949

ABSTRACT

Cells use glycans to encode information that modulates processes ranging from cell-cell recognition to programmed cell death. This information is encoded within a glycocode, and its decoding is performed by carbohydrate-binding proteins. Among these, lectins stand out due to their specific and reversible interaction with carbohydrates. Changes in glycosylation patterns are observed in several pathologies, including cancer, where abnormal glycans are found on the surfaces of affected tissues. Given the importance of the bioprospection of promising biomolecules, the current work aimed to determine the structural properties and anticancer potential of the mannose-specific lectin from seeds of Canavalia villosa (Cvill). Experimental elucidation of the primary and 3D structures of the lectin, along with glycan array and molecular docking, facilitated the determination of its fine carbohydrate-binding specificity. These structural insights, coupled with the lectin's specificity, have been combined to explain the antiproliferative effect of Cvill against cancer cell lines. This effect is dependent on the carbohydrate-binding activity of Cvill and its uptake in the cells, with concomitant activation of autophagic and apoptotic pathways.


Subject(s)
Canavalia , Lectins , Lectins/pharmacology , Lectins/analysis , Canavalia/metabolism , Molecular Docking Simulation , Plant Lectins/metabolism , Seeds/metabolism , Carbohydrates/analysis , Polysaccharides/analysis
15.
BMC Infect Dis ; 23(1): 785, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950231

ABSTRACT

BACKGROUND: The organ most commonly invaded in echinococcosis is the liver; the lungs, brain, kidneys, heart, and spleen are rarely invaded, and multi-organ involvement in echinococcosis is even rarer. No studies have reported renal invasion after liver transplantation for hepatic alveolar echinococcosis. CASE PRESENTATION: We report here a case of renal invasion 2 years after allogeneic liver transplantation in a 53-year-old female patient with hepatic alveolar echinococcosis combined with lung metastases. At the time of the first consultation, the lesion had been found to involve the second hepatic hilum combined with lung metastases, but the patient requested conservative treatment, and the lesion was not controlled by taking albendazole for 3 years. After discussion in the treatment group, it was decided to use allogeneic liver transplantation and lung segmental resection for surgical treatment, after which the patient was put on long-term oral immunosuppression. She was hospitalized 2 years later for low back pain and diagnosed with renal alveolar echinococcosis. Due to significant compression and left-sided renal insufficiency, the final option was to remove the diseased kidney. It is worth mentioning that signs of unexplained urinary tract infection were present throughout the course of treatment. CONCLUSION: This study suggests that extra attention should be paid to the presence of cryptogenic lesions in patients with hepatic alveolar echinococcosis who already have definite metastatic lesions. Immunosuppressive drugs after liver transplantation in patients with hepatic echinococcosis may cause occult lesions to develop into active ones. In clinical practice, particular attention should be paid to patients with hepatic alveolar echinococcosis with long-term concomitant signs of unexplained urinary tract infections, which may be a precursor clinical feature of cryptogenic renal alveolar echinococcosis.


Subject(s)
Echinococcosis, Hepatic , Echinococcosis , Liver Transplantation , Lung Neoplasms , Female , Humans , Middle Aged , Echinococcosis, Hepatic/diagnosis , Echinococcosis, Hepatic/surgery , Echinococcosis, Hepatic/complications , Liver Transplantation/adverse effects , Echinococcosis/diagnosis , Echinococcosis/surgery , Liver/surgery , Kidney , Lung Neoplasms/complications
16.
Molecules ; 28(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38005391

ABSTRACT

Chromium picolinate (CP) is an organic compound that has long been used to treat diabetes. Our previous studies found CP could relieve diabetic nephropathy. Thus, we speculate that it might have a positive effect on diabetic testicular injury. In this study, a diabetic rat model was established, and then the rats were treated with CP for 8 weeks. We found that the levels of blood glucose, food, and water intake were reduced, and body weight was enhanced in diabetic rats after CP supplementation. Meanwhile, in CP treatment groups, the levels of male hormone and sperm parameters were improved, the pathological structure of the testicular tissue was repaired, and testicular fibrosis was inhibited. In addition, CP reduced the levels of serum inflammatory cytokines, and decreased oxidative stress and apoptosis in the testicular tissue. In conclusion, CP could ameliorate testicular damage in diabetic rats, as well as being a potential testicle-protective nutrient in the future to prevent the testicular damage caused by diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Rats , Male , Animals , Testis , Transforming Growth Factor beta1/metabolism , Diabetes Mellitus, Experimental/pathology , Semen/metabolism , Diabetic Nephropathies/drug therapy , Anti-Inflammatory Agents/pharmacology , Oxidative Stress , Apoptosis , Streptozocin/pharmacology
17.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4497-4516, 2023 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-38013180

ABSTRACT

Cyclodipeptide (CDP) composed of two amino acids is the simplest cyclic peptide. These two amino acids form a typical diketopiperazine (DKP) ring by linking each other with peptide bonds. This characteristic stable ring skeleton is the foundation of CDP to display extensive and excellent bioactivities, which is beneficial for CDPs' pharmaceutical research and development. The natural CDP products are well isolated from actinomycetes. These bacteria can synthesize DKP backbones with nonribosomal peptide synthetase (NRPS) or cyclodipeptide synthase (CDPS). Moreover, actinomycetes could produce a variety of CDPs through different enzymatic modification. The presence of these abundant and diversified catalysis indicates that actinomycetes are promising microbial resource for exploring CDPs. This review summarized the pathways for DKP backbones biosynthesis and their post-modification mechanism in actinomycetes. The aim of this review was to accelerate the genome mining of CDPs and their isolation, purification and structure identification, and to facilitate revealing the biosynthesis mechanism of novel CDPs as well as their synthetic biology design.


Subject(s)
Actinobacteria , Biological Products , Actinobacteria/genetics , Actinobacteria/metabolism , Actinomyces/metabolism , Biological Products/metabolism , Bacteria/metabolism , Diketopiperazines/chemistry , Diketopiperazines/metabolism , Amino Acids
18.
Acta Pharm Sin B ; 13(11): 4591-4606, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37969731

ABSTRACT

Although carbon monoxide (CO)-based treatments have demonstrated the high cancer efficacy by promoting mitochondrial damage and core-region penetrating ability, the efficiency was often compromised by protective autophagy (mitophagy). Herein, cannabidiol (CBD) is integrated into biomimetic carbon monoxide nanocomplexes (HMPOC@M) to address this issue by inducing excessive autophagy. The biomimetic membrane not only prevents premature drugs leakage, but also prolongs blood circulation for tumor enrichment. After entering the acidic tumor microenvironment, carbon monoxide (CO) donors are stimulated by hydrogen oxide (H2O2) to disintegrate into CO and Mn2+. The comprehensive effect of CO/Mn2+ and CBD can induce ROS-mediated cell apoptosis. In addition, HMPOC@M-mediated excessive autophagy can promote cancer cell death by increasing autophagic flux via class III PI3K/BECN1 complex activation and blocking autolysosome degradation via LAMP1 downregulation. Furthermore, in vivo experiments showed that HMPOC@M+ laser strongly inhibited tumor growth and attenuated liver and lung metastases by downregulating VEGF and MMP9 proteins. This strategy may highlight the pro-death role of excessive autophagy in TNBC treatment, providing a novel yet versatile avenue to enhance the efficacy of CO treatments. Importantly, this work also indicated the applicability of CBD for triple-negative breast cancer (TNBC) therapy through excessive autophagy.

19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 1024-1029, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37866963

ABSTRACT

Objective: To investigate the relationship between thrombin-antithrombin complex (TAT), plasmin-α 2-plasmininhibitor complex (PIC), soluble thrombomodulin (sTM), and tissue plasminogen activator-inhibitor complex (tPAIC) and postoperative complications in the early stage after liver transplantation (LT). Methods: We analyzed the perioperative clinical data, including plasma TAT, PIC, sTM, and tPAIC, of 130 post-LT patients admitted to the intensive care unit (ICU), West China Hospital, Sichuan University between December 2021 and November 2022. Patients were divided into two groups, a complication group and a non-complication group, according to whether they experienced complications of Clavien-Dindo (CD) grade Ⅲb and above within 30 days after the surgery. Univariate analysis and binary multivariate logistic regression models were used to determine the risk factors for complications within 30 days post-LT. Results: The incidence of complications of CD grade Ⅲb and above within 30 days post-LT was 33.1% (43/130). Patients in the complication group had significantly higher scores for the Model for End-Stage Liver Disease (MELD), operative time, intraoperative red blood cell transfusion volume, intraoperative plasma transfusion volume, and plasma TAT, PIC, sTM and tPAIC measured at the time of admission to ICU after the operation than those in the non-complication group did (all P<0.05). Logistic regression showed that for every single U of red blood cells transfused during the transplant surgery, the probabilities of complications within 30 days post-LT increased by 15.1% (95% confidence interval [ C I]: 1.070-1.239, P<0.001) and for the increase of every single TU/mL of plasma sTM measured upon post-LT admission to ICU, the probabilities of complications increased by 13.7% (95% CI: 1.060-1.220, P<0.001). Conclusion: Plasma sTM measured upon admission to ICU after LT is an independent risk factor for complications within 30 days post-LT, and additional assessment of sTM may help predict complications in the early stage post-LT.


Subject(s)
End Stage Liver Disease , Liver Transplantation , Humans , Tissue Plasminogen Activator , Liver Transplantation/adverse effects , Blood Component Transfusion , End Stage Liver Disease/etiology , Severity of Illness Index , Plasma , Risk Factors , Retrospective Studies
20.
Polymers (Basel) ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37896309

ABSTRACT

Recently, material extrusion (MEX) 3D printing technology has attracted extensive attention. However, some high-performance thermoplastic polymer resins, such as polycarbonate (PC), cannot be processed by conventional MEX printing equipment due to poor processing performance. In order to develop new PC-based printing materials suitable for MEX, PC/poly(butylene adipate-co-terephthalate) (PBAT) blends were prepared using a simple polymer blending technique. It was found that the addition of PBAT component significantly improved processing performance of the PC, making the blends processable at 250 °C. More importantly, the PC was completely compatible with the PBAT, and the PBAT effectively reduced the Tg of the blends, endowing the blends with essential 3D printing performance. Furthermore, methyl methacrylate-butadiene-styrene terpolymer (MBS) was introduced into the PC/PBAT blends to improve toughness. SEM observations demonstrated that MBS particles, as stress concentration points, triggered shear yielding of polymer matrix and absorbed impact energy substantially. In addition, the MBS had little effect on the 3D printing performance of the blends. Thus, a PC/PBAT/MBS blend system with favorable comprehensive mechanical properties and 3D printing performance was achieved. This work can provide guidance for the development of novel MEX printing materials and is of great significance for expanding the variety of MEX printing materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...