Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Assist Reprod Genet ; 40(9): 2157-2173, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37450097

ABSTRACT

BACKGROUND: Expanded carrier screening (ECS) has become a common practice for identifying carriers of monogenic diseases. However, existing large gene panels are not well-tailored to Chinese populations. In this study, ECS testing for pathogenic variants of both single-nucleotide variants (SNVs) and copy number variants (CNVs) in 330 genes implicated in 342 autosomal recessive (AR) or X-linked diseases was carried out. We assessed the differences in allele frequencies specific to the Chinese population who have used assisted reproductive technology (ART) and the important genes to screen for in this population. METHODOLOGY: A total of 300 heterosexual couples were screened by our ECS panel using next-generation sequencing. A customed bioinformatic algorithm was used to analyze SNVs and CNVs. Guidelines from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology were adapted for variant interpretation. Pathogenic or likely pathogenic (P/LP) SNVs located in high homology regions/deletions and duplications of one or more exons in length were independently verified with other methods. RESULTS: 64.83% of the patients were identified to be carriers of at least one of 342 hereditary conditions. We identified 622 P/LP variants, 4.18% of which were flagged as CNVs. The rate of at-risk couples was 3%. A total of 149 AR diseases accounted for 64.05% of the cumulative carrier rate, and 48 diseases had a carrier rate above 1/200 in the test. CONCLUSION: An expanded screening of inherited diseases by incorporating different variant types, especially CNVs, has the potential to reduce the occurrence of severe monogenic diseases in the offspring of patients using ART in China.


Subject(s)
East Asian People , Genetic Carrier Screening , Genetic Diseases, Inborn , Reproductive Techniques, Assisted , Humans , China/epidemiology , East Asian People/genetics , Exons , Gene Frequency/genetics , Genetic Testing , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/prevention & control
2.
Front Endocrinol (Lausanne) ; 14: 1130536, 2023.
Article in English | MEDLINE | ID: mdl-37152951

ABSTRACT

Background: Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary kidney disorder mostly caused by mutations in PKD1 or PKD2 genes. Here, we report thirteen ADPKD males with infertility and investigated the sperm morphological defects associated with PC1 disruption. Methods: Targeted next-generation sequencing was performed to detect PKD1 variants in patients. Sperm morphology was observed by immunostaining and transmission electron microscopy, and the sperm motility was assessed using the computer-assisted sperm analysis system. The Hippo signaling pathway was analyzed with by quantitative reverse transcription polymerase chain reaction (qPCR) and western blotting in vitro. Results: The ADPKD patients were infertile and their sperm tails showed morphological abnormalities, including coiled flagella, absent central microtubules, and irregular peripheral doublets. In addition, the length of sperm flagella was shorter in patients than in controls of in in. In vitro, ciliogenesis was impaired in Pkd1-depleted mouse kidney tubule cells. The absence of PC1 resulted in a reduction of MST1 and LATS1, leading to nuclear accumulation of YAP/TAZ and consequently increased transcription of Aurka. which might promote HDAC6-mediated ciliary disassembly. Conclusion: Our results suggest the dysregulated Hippo signaling significantly contributes to ciliary abnormalities in and may be associated with flagellar defects in spermatozoa from ADPKD patients.


Subject(s)
Hippo Signaling Pathway , Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Animals , Humans , Male , Mice , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/genetics , Semen , Sperm Motility , Spermatozoa/pathology , TRPP Cation Channels/genetics
3.
Front Immunol ; 13: 917383, 2022.
Article in English | MEDLINE | ID: mdl-35860261

ABSTRACT

Objective: Preterm birth (PTB) is a typical inflammatory disease with unclear pathogenesis. The studies investigating the relationship between anti-inflammatory factors IL-4 and IL-10 gene polymorphisms and PTB produced conflicting results. This systematic review and meta-analysis aimed to summarize the effects of IL-4 and IL-10 gene polymorphisms and clarify their possible association with PTB. Methods: A systematic literature review was conducted using PubMed, Web of Science, and Cochrane library (up to 02 April 2022). The MeSH terms, related entry terms, and other names in "Gene" database were used to find relevant articles. A fixed- or random-effects model was used to calculate the significance of IL-4 and IL-10 gene polymorphisms, depending on study heterogeneity. The odds ratios (OR) and 95% confidence intervals (CIs) were calculated in the allele, recessive, dominant, co-dominant, and over-dominant models. The Eggers publication bias plot was used to graphically represent the publication bias. Results: Polymorphisms in two interleukins (IL-4-590C/T (rs2243250) = 5 and IL-10-592A/C (rs1800872), -819T/C (rs1800871) and -1082A/G (rs1800896) = 16) were found in 21 articles. Overall, only the over-dominant gene model AA + GG vs. AG revealed significant association between IL-10-1082A/G (rs1800896) and PTB (OR [95% CI] = 0.87 [0.76, 0.99], p = 0.04). However, in the allele model, recessive model, dominant model, co-dominant model, and over-dominant model, the polymorphisms for IL-4-590C/T (rs2243250), IL-10-592A/C (rs1800872), and IL-10-819T/C (rs1800871) were not found to be associated with the risk of PTB. In gene models, no statistically significant association was found between IL-4-590C/T (rs2243250), IL-10-592A/C (rs1800872), IL-10-819T/C (rs1800871), and IL-10-1082A/G (rs1800896) polymorphisms and PTB in subgroup analyses by racial or control group Hardy-Weinberg Equilibrium (HWE) p-value. Eggers's publication bias plot and heterogeneity test (I2<50%, p = 0.05) of IL-10-1082A/G (rs1800896) suggested that the funnel asymmetry could be due to publication bias rather than heterogeneity. Conclusion: The current study suggests that the over-dominant gene model AA + GG vs. AG of IL-10-1082A/G (rs1800896) polymorphism may be associated with genetic susceptibility to PTB and may have a protective function against PTB risk. There was unclear association found between IL-4-590C/T (rs2243250), IL-10-592A/C (rs1800872) and IL-10-819T/C (rs1800871) polymorphisms and PTB. Due to the limitations of included studies and the risk of publication bias, additional research is required to confirm our findings. Systematic Review Registration: https://inplasy.com/inplasy-2022-4-0044, identifier INPLASY202240044.


Subject(s)
Interleukin-10/genetics , Interleukin-4/genetics , Premature Birth , Case-Control Studies , Female , Humans , Infant, Newborn , Polymorphism, Genetic , Premature Birth/genetics
4.
BMJ Open ; 12(7): e063030, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831058

ABSTRACT

INTRODUCTION: Conventional intracytoplasmic sperm injection (ICSI) is a widely used treatment for couples with severe male infertility. However, there are controversies regarding the selection and the damage to gametes during the ICSI procedure. Although preimplantation genetic testing for aneuploidies (PGT-A) can give genetic information about embryos for transfer and improve fertility rate, and it is widely used in women with recurrent spontaneous abortion or advanced age, PGT-A is not only more expensive but also has unclear effectiveness with respect to the improvement of fertility rate among couples with severe male infertility. High-quality, well-powered randomised clinical trials (RCTs) comparing ICSI+PGT-A and ICSI are lacking. METHODS AND ANALYSIS: This is a protocol for a multicenter, open-label RCT in four reproductive medical centers qualified for PGT technique in China. We will study couples with severe male infertility scheduled for their fertility treatment. After the blastocyst culture, eligible participants are randomised to the ICSI+PGT-A group or the conventional ICSI group in a 1:1 ratio. Other assisted reproductive procedures are similar and parallel between the two groups. The primary outcome will be live birth rate and cumulative live-birth rate . Secondary outcomes will be embryo implantation rate, biochemical pregnancy rate, clinical pregnancy rate, spontaneous abortion rate, ongoing pregnancy rate, preterm birth rate, fetal chromosomal abnormality rate, birth defect rate and treatment complications. To demonstrate or refute a difference between the two groups, we plan to include 188 participants in each group; taking consideration of 20% of dropout, the total target sample size is 450. ETHICS AND DISSEMINATION: Ethical approval was obtained from International Peace Maternity and Child Health Hospital of Shanghai Jiao Tong University Medical Science Research Ethics Committee (GKLW2016-16). Informed consent will be obtained from each participant. The findings will be disseminated to the public through conference presentations and publication in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov, NCT02941965.


Subject(s)
Abortion, Spontaneous , Infertility, Male , Abortion, Spontaneous/genetics , Aneuploidy , Child , China , Female , Fertilization in Vitro , Genetic Testing/methods , Humans , Infant, Newborn , Infertility, Male/genetics , Infertility, Male/therapy , Live Birth , Male , Multicenter Studies as Topic , Pregnancy , Pregnancy Rate , Randomized Controlled Trials as Topic
5.
Front Endocrinol (Lausanne) ; 13: 849534, 2022.
Article in English | MEDLINE | ID: mdl-35399940

ABSTRACT

Recent studies have suggested that sperm mitochondrial DNA copy number (mtDNA-CN), DNA fragmentation index (DFI), and reactive oxygen species (ROS) content are crucial to sperm function. However, the associations between these measurements and embryo development and pregnancy outcomes in assisted reproductive technology (ART) remain unclear. Semen samples were collected from 401 participants, and seminal quality, parameters of sperm concentration, motility, and morphology were analyzed by a computer-assisted sperm analysis system. DFI, mtDNA-CN, and ROS levels were measured using sperm chromatin structure assay, real-time quantitative polymerase chain reaction, and ROS assay, respectively. Among the participants, 126 couples underwent ART treatments, including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), and 79 of the couples had embryos transferred. In 401 semen samples, elevated mtDNA-CN and DFI were associated with poor seminal quality. In 126 ART couples, only mtDNA-CN was negatively correlated with the fertilization rate, but this correlation was not significant after adjusting for male age, female age, seminal quality, ART strategy, number of retrieved oocytes, controlled stimulation protocols, and cycle rank. Regarding pregnancy outcomes, sperm mtDNA-CN, ROS, and DFI were not associated with the clinical pregnancy rate or live birth rate in 79 transferred cases. In conclusion, increased mtDNA-CN and DFI in sperm jointly contributed to poor seminal quality, but sperm mtDNA-CN, ROS, and DFI were not associated with clinical outcomes in ART.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , DNA Fragmentation , DNA, Mitochondrial/genetics , Female , Humans , Male , Pregnancy , Reactive Oxygen Species , Reproductive Techniques, Assisted , Spermatozoa/physiology
6.
J Clin Med ; 10(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34501345

ABSTRACT

BACKGROUND: Preimplantation genetic testing for aneuploidies (PGT-A) is widely used in women of advanced maternal age (AMA). However, the effectiveness remains controversial. METHOD: We conducted a comprehensive literature review comparing outcomes of IVF with or without PGT-A in women of AMA in PubMed, Embase, and the Cochrane Central Register of Controlled Trials in January 2021. All included trials met the criteria that constituted a randomized controlled trial for PGT-A involving women of AMA (≥35 years). Reviews, conference abstracts, and observational studies were excluded. The primary outcome was the live birth rate in included random control trials (RCTs). RESULTS: Nine randomized controlled trials met our inclusion criteria. For techniques of genetic analysis, three trials (270 events) performed with comprehensive chromosomal screening showed that the live birth rate was significantly higher in the women randomized to IVF/ICSI with PGT-A (RR = 1.30, 95% CI 1.03-1.65), which was not observed in six trials used with FISH as well as all nine trials. For different stages of embryo biopsy, only the subgroup of blastocyst biopsy showed a higher live birth rate in women with PGT-A (RR = 1.36, 95% CI 1.04-1.79). CONCLUSION: The application of comprehensive chromosome screening showed a beneficial effect of PGT-A in women of AMA compared with FISH. Moreover, blastocyst biopsy seemed to be associated with a better outcome than polar body biopsy and cleavage-stage biopsy.

7.
Front Genet ; 12: 633003, 2021.
Article in English | MEDLINE | ID: mdl-33633790

ABSTRACT

BACKGROUND: Alport syndrome, a monogenic kidney disease, is characterized by progressive hemorrhagic nephritis, sensorineural hearing loss, and ocular abnormalities. Mutations in COL4A5 at Xq22 accounts for 80-85% of X-linked Alport syndrome patients. Three couples were referred to our reproductive genetics clinic for prenatal or preconception counseling. METHODS: Prenatal diagnoses were performed by amplifying targeted regions of COL4A5. Targeted next-generation sequencing (NGS)-based haplotype analysis or karyomapping was performed in two patients. Pregnancy outcomes in the three patients were collected and analyzed. Published Alport syndrome cases were searched in Pubmed and Embase. RESULTS: Prenatal diagnoses in two cases showed one fetus harbored the same pathogenic mutation as the proband and the other was healthy. The couple with an affected fetus and the patient with a family history of Alport syndrome chose to take the preimplantation genetic testing (PGT) procedure. One unaffected embryo was transferred to the uterus, and a singleton pregnancy was achieved, respectively. Two patients presented non-nephrotic range proteinuria (<3 g/24 h) during pregnancy and the three cases all delivered at full-term. However, published Alport cases with chronic kidney disease or proteinuria during pregnancy were came with a high rate (75%) of adverse maternal and fetal outcomes. CONCLUSION: The PGT procedure performed in this study was proven to be practicable and might be expanded to be applied in other monogenic diseases. Moderate or severe renal impairments in Alport syndrome were strongly associated with adverse maternal and fetal outcomes, and baseline proteinuria was a potential predictor for pregnancy outcomes of Alport syndrome as other kidney diseases.

8.
Int J Oncol ; 52(3): 955-966, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29328368

ABSTRACT

The incidence of gastric cancer (GC) is extremely high in East Asia. GC is also one of the most common and lethal forms of cancer from a global perspective. However, to date, we have not been able to determine one or several genes as biomarkers in the diagnosis of GC and have also been unable to identify the genes which are important in the therapy of GC. In this study, we analyzed all genome-wide expression profiling arrays uploaded onto the Gene Expression Omnibus (GEO) database to filtrate the differentially expressed genes (DEGs) between normal stomach tissues and GC tissues. GSE13911, GSE19826 and GSE79973 were based on the GPL570 platform, and GSE29272 was based on the GPL96 platform. We screened out the DEGs from the two platforms and by selecting the intersection of these two platforms, we identified the common DEGs in the sequencing data from different laboratories. Finally, we obtained 3 upregulated and 34 downregulated DEGs in GC from 384 samples. As the number of downregulated DEGs was greater than that of the upregulated DEGs, functional analysis and pathway enrichment analysis were performed on the downregulated DEGs. Through our analysis, we identified the most significant genes associated with GC, such as secreted phosphoprotein 1 (SPP1), sulfatase 1 (SULF1), thrombospondin 2 (THBS2), ATPase H+/K+ transporting beta subunit (ATP4B), gastric intrinsic factor (GIF) and gastrokine 1 (GKN1). The prognostic power of these genes was corroborated in the Oncomine database and by Kaplan-Meier plotter (KM-plotter) analysis. Moreover, gastric acid secretion, collecting duct acid secretion, nitrogen metabolism and drug metabolism were significantly related to GC. Thus, these genes and pathways may be potential targets for improving the diagnosis and clinical effects in patients with GC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Stomach Neoplasms/genetics , Datasets as Topic , Gene Expression Profiling/methods , Humans , Kaplan-Meier Estimate , Oligonucleotide Array Sequence Analysis/methods , Prognosis , Stomach/pathology , Stomach Neoplasms/diagnosis , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology
9.
PLoS One ; 12(2): e0172173, 2017.
Article in English | MEDLINE | ID: mdl-28231257

ABSTRACT

X-linked lymphoproliferative disease type 1 (XLP1) is a rare primary immunodeficiency characterized by a clinical triad consisting of severe EBV-induced hemophagocytic lymphohistiocytosis, B-cell lymphoma, and dysgammaglobulinemia. Mutations in SH2D1A gene have been revealed as the cause of XLP1. In this study, a pregnant woman with recurrence history of birthing immunodeficiency was screened for pathogenic variant because the proband sample was unavailable. We aimed to clarify the genetic diagnosis and provide prenatal testing for the family. Next-generation sequencing (NGS)-based multigene panel was used in carrier screening of the pregnant woman. Variants of immunodeficiency related genes were analyzed and prioritized. Candidate variant was verified by using Sanger sequencing. The possible influence of the identified variant was evaluated through RNA assay. Amniocentesis, karyotyping, and Sanger sequencing were performed for prenatal testing. We identified a novel de novo frameshift SH2D1A pathogenic variant (c.251_255delTTTCA) in the pregnant carrier. Peripheral blood RNA assay indicated that the mutant transcript could escape nonsense-mediated mRNA decay (NMD) and might encode a C-terminal truncated protein. Information of the variant led to success prenatal diagnosis of the fetus. In conclusion, our study clarified the genetic diagnosis and altered disease prevention for a pregnant carrier of XLP1.


Subject(s)
Frameshift Mutation , Lymphoproliferative Disorders/genetics , Signaling Lymphocytic Activation Molecule Associated Protein/genetics , Adult , Female , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Nonsense Mediated mRNA Decay , Pedigree , Pregnancy , Prenatal Diagnosis , RNA, Messenger/genetics
10.
EBioMedicine ; 16: 275-283, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28111236

ABSTRACT

BACKGROUND: Excessive androgen exposure during pregnancy has been suggested to induce diabetic phenotypes in offspring in animal models. The aim of this study was to investigate whether pregestational maternal hyperandrogenism in human influenced the glucose metabolism in offspring via epigenetic memory from mother's oocyte to child's somatic cells. METHODS: Of 1782 reproductive-aged women detected pregestational serum androgen, 1406 were pregnant between 2005 and 2010. Of 1198 women who delivered, 1116 eligible mothers (147 with hyperandrogenism and 969 normal) were recruited. 1216 children (156 children born to mothers with hyperandrogenism and 1060 born to normal mother) were followed up their glycometabolism in mean age of 5years. Imprinting genes of oocyte from mothers and lymphocytes from children were examined. A pregestational hyperandrogenism rat model was also established. FINDINGS: Children born to women with hyperandrogenism showed increased serum fasting glucose and insulin levels, and were more prone to prediabetes (adjusted RR: 3.98 (95%CI 1.16-13.58)). Oocytes from women with hyperandrogenism showed increased insulin-like growth factor 2 (IGF2) expression. Lymphocytes from their children also showed increased IGF2 expression and decreased IGF2 methylation. Treatment of human oocytes with dihydrotestosterone upregulated IGF2 and downregulated DNMT3a levels. In rat, pregestational hyperandrogenism induced diabetic phenotypes and impaired insulin secretion in offspring. In consistent with the findings in human, hyperandrogenism also increased Igf2 expression and decreased DNMT3a in rat oocytes. Importantly, the same altered methylation signatures of Igf2 were identified in the offspring pancreatic islets. INTERPRETATION: Pregestational hyperandrogenism may predispose offspring to glucose metabolism disorder via epigenetic oocyte inheritance. Clinical trial registry no.: ChiCTR-OCC-14004537; www.chictr.org.


Subject(s)
Epigenesis, Genetic , Hyperandrogenism/genetics , Mothers/statistics & numerical data , Prediabetic State/genetics , Adult , Animals , Blood Glucose/metabolism , Child , Child, Preschool , China/epidemiology , Disease Models, Animal , Female , Humans , Hyperandrogenism/complications , Insulin/blood , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Oocytes/cytology , Oocytes/metabolism , Prediabetic State/epidemiology , Prediabetic State/etiology , Pregnancy , Prevalence , Prospective Studies , Rats , Risk Factors
11.
Hum Genet ; 136(2): 227-239, 2017 02.
Article in English | MEDLINE | ID: mdl-27896428

ABSTRACT

Mechanisms underlying female gonadal dysgenesis remain unclarified and relatively unstudied. Whether X-chromosome inactivation (XCI)-escaping genes and microRNAs (miRNAs) contribute to this condition is currently unknown. We compared 45,X Turner Syndrome women with 46,XX normal women, and investigated differentially expressed miRNAs in Turner Syndrome through plasma miRNA sequencing. We found that miR-320a was consistently upregulated not only in 45,X plasma and peripheral blood mononuclear cells (PBMCs), but also in 45,X fetal gonadal tissues. The levels of miR-320a in PBMCs from 45,X, 46,XX, 46,XY, and 47,XXY human subjects were inversely related to the expression levels of XCI-escaping gene KDM5C in PBMCs. In vitro models indicated that KDM5C suppressed miR-320a transcription by directly binding to the promoter of miR-320a to prevent histone methylation. In addition, we demonstrated that KITLG, an essential gene for ovarian development and primordial germ cell survival, was a direct target of miR-320a and that it was downregulated in 45,X fetal gonadal tissues. In conclusion, we demonstrated that downregulation of miR-320a by the XCI-escaping gene KDM5C contributed to ovarian development by targeting KITLG.


Subject(s)
Histone Demethylases/genetics , MicroRNAs/genetics , Ovary/growth & development , Turner Syndrome/genetics , X Chromosome Inactivation/genetics , Adolescent , Adult , Amino Acid Sequence , Cell Line, Tumor , Chromatin Immunoprecipitation , Down-Regulation , Female , Gene Expression Regulation , Gene Ontology , HEK293 Cells , Humans , Leukocytes, Mononuclear/metabolism , MicroRNAs/blood , Promoter Regions, Genetic , Sequence Analysis, RNA , Up-Regulation , Young Adult
12.
Sci Rep ; 6: 25488, 2016 05 06.
Article in English | MEDLINE | ID: mdl-27150309

ABSTRACT

Here, we evaluate the applicability of a new method that combines targeted next-generation sequencing (NGS) with targeted haplotyping in identifying PKD2 gene mutations in human preimplantation embryos in vitro. To achieve this goal, a proband family with a heterozygous deletion of c.595_595 + 14delGGTAAGAGCGCGCGA in exon 1 of the PKD2 gene was studied. A total of 10 samples were analyzed, including 7 embryos. An array-based gene chip was designed to capture all of the exons of 21 disease-related genes, including PKD2. We performed Sanger sequencing combined with targeted haplotyping to evaluate the feasibility of this new method. A total of 7.09 G of data were obtained from 10 samples by NGS. In addition, 24,142 informative single-nucleotide polymorphisms (SNPs) were identified. Haplotyping analysis of several informative SNPs of PKD2 that we selected revealed that embryos 3, 5, and 6 did not inherit the mutation haplotypes of the PKD2 gene, a finding that was 100% accurate and was consistent with Sanger sequencing. Our results demonstrate that targeted NGS combined with targeted haplotyping can be used to identify PKD2 gene mutations in human preimplantation embryos in vitro with high sensitivity, fidelity, throughput and speed.


Subject(s)
Blastocyst , Genetic Testing/methods , Genotyping Techniques , High-Throughput Nucleotide Sequencing , Mutation , TRPP Cation Channels/genetics , Haplotypes , Humans , Polymorphism, Single Nucleotide
14.
Sci Rep ; 5: 17468, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26632257

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequently inherited renal diseases caused by mutations in PKD1 and PKD2. We performed mutational analyses of PKD genes in 49 unrelated patients using direct PCR-sequencing and multiplex ligation-dependent probe amplification (MLPA) for PKD1 and PKD2. RT-PCR analysis was also performed in a family with a novel PKD2 splicing mutation. Disease-causing mutations were identified in 44 (89.8%) of the patients: 42 (95.5%) of the patients showed mutations in PKD1, and 2 (4.5%) showed mutations in PKD2. Ten nonsense, 17 frameshift, 4 splicing and one in-frame mutation were found in 32 of the patients. Large rearrangements were found in 3 patients, and missense mutations were found in 9 patients. Approximately 61.4% (27/44) of the mutations are first reported with a known mutation rate of 38.6%. RNA analysis of a novel PKD2 mutation (c.595_595 + 14delGGTAAGAGCGCGCGA) suggested monoallelic expression of the wild-type allele. Furthermore, patients with PKD1-truncating mutations reached end-stage renal disease (ESRD) earlier than patients with non-truncating mutations (47 ± 3.522 years vs. 59 ± 11.687 years, P = 0.016). The mutation screening of PKD genes in Chinese ADPKD patients will enrich our mutation database and significantly contribute to improve genetic counselling for ADPKD patients.


Subject(s)
Mutation , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics , Adult , Age of Onset , Asian People/genetics , Female , Humans , Male , Middle Aged , Polycystic Kidney, Autosomal Dominant/mortality , Polymerase Chain Reaction
15.
Article in English | MEDLINE | ID: mdl-25925998

ABSTRACT

BACKGROUND: Leiomyomatosis peritonealis disseminata (LPD) is a rare disease characterised by the subperitoneal proliferation of smooth muscle cells that form benign nodules. A few studies have aimed to reveal the pathogenesis of LPD without reaching a clear explanation. METHODS: Karyotype analysis and array-comparative genomic hybridization (aCGH) of a human LPD case were performed to evaluate the role of chromosomal abnormalities in LPD pathogenesis. RESULTS: The LPD nodules showed a 45, XX, del(7p), t(11; 17) (q23;q25),-22 de novo karyotype, and the aCGH analysis confirmed these deletions at 7p22.3-p12.1 (1,862,362-52,766,911 bp) and 22q11.23-q13.33 (21,973,915-49,265,116 bp) with lengths of 50.9 Mb and 27.3 Mb, respectively. CONCLUSION: In this study, we described two large novel aberrations - deletions in chromosome 7 and 22 - that might play an important role in LPD disease. These findings might contribute to new insights to unravel the pathogenesis of LPD and develop further clinical treatments. © 2015 S. Karger AG, Basel.

SELECTION OF CITATIONS
SEARCH DETAIL
...