Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Europace ; 23(3): 441-450, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33200177

ABSTRACT

AIMS: In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the children's deaths as part of an inquiry into the mother's convictions. METHODS AND RESULTS: Whole genomes or exomes of the mother and her four children were sequenced. Functional analysis of a novel CALM2 variant was performed by measuring Ca2+-binding affinity, interaction with calcium channels and channel function. We found two children had a novel calmodulin variant (CALM2 G114R) that was inherited maternally. Three genes (CALM1-3) encode identical calmodulin proteins. A variant in the corresponding residue of CALM3 (G114W) was recently reported in a child who died suddenly at age 4 and a sibling who suffered a cardiac arrest at age 5. We show that CALM2 G114R impairs calmodulin's ability to bind calcium and regulate two pivotal calcium channels (CaV1.2 and RyR2) involved in cardiac excitation contraction coupling. The deleterious effects of G114R are similar to those produced by G114W and N98S, which are considered arrhythmogenic and cause sudden cardiac death in children. CONCLUSION: A novel functional calmodulin variant (G114R) predicted to cause idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, or mild long QT syndrome was present in two children. A fatal arrhythmic event may have been triggered by their intercurrent infections. Thus, calmodulinopathy emerges as a reasonable explanation for a natural cause of their deaths.


Subject(s)
Infanticide , Tachycardia, Ventricular , Arrhythmias, Cardiac , Australia , Child , Child, Preschool , Death, Sudden, Cardiac/etiology , Female , Humans , Infant , Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics
2.
Biochem J ; 474(16): 2749-2761, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28687594

ABSTRACT

Mutations in the skeletal muscle ryanodine receptor (RyR1) cause malignant hyperthermia (MH) and central core disease (CCD), whereas mutations in the cardiac ryanodine receptor (RyR2) lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most disease-associated RyR1 and RyR2 mutations are located in the N-terminal, central, and C-terminal regions of the corresponding ryanodine receptor (RyR) isoform. An increasing body of evidence demonstrates that CPVT-associated RyR2 mutations enhance the propensity for spontaneous Ca2+ release during store Ca2+ overload, a process known as store overload-induced Ca2+ release (SOICR). Considering the similar locations of disease-associated RyR1 and RyR2 mutations in the RyR structure, we hypothesize that like CPVT-associated RyR2 mutations, MH/CCD-associated RyR1 mutations also enhance SOICR. To test this hypothesis, we determined the impact on SOICR of 12 MH/CCD-associated RyR1 mutations E2347-del, R2163H, G2434R, R2435L, R2435H, and R2454H located in the central region, and Y4796C, T4826I, L4838V, A4940T, G4943V, and P4973L located in the C-terminal region of the channel. We found that all these RyR1 mutations reduced the threshold for SOICR. Dantrolene, an acute treatment for MH, suppressed SOICR in HEK293 cells expressing the RyR1 mutants R164C, Y523S, R2136H, R2435H, and Y4796C. Interestingly, carvedilol, a commonly used ß-blocker that suppresses RyR2-mediated SOICR, also inhibits SOICR in these RyR1 mutant HEK293 cells. Therefore, these results indicate that a reduced SOICR threshold is a common defect of MH/CCD-associated RyR1 mutations, and that carvedilol, like dantrolene, can suppress RyR1-mediated SOICR. Clinical studies of the effectiveness of carvedilol as a long-term treatment for MH/CCD or other RyR1-associated disorders may be warranted.


Subject(s)
Calcium Signaling , Malignant Hyperthermia/genetics , Models, Molecular , Myopathy, Central Core/genetics , Point Mutation , Ryanodine Receptor Calcium Release Channel/genetics , Adrenergic beta-Antagonists/pharmacology , Amino Acid Substitution , Animals , Calcium Signaling/drug effects , Carbazoles/pharmacology , Carvedilol , Dantrolene/pharmacology , Fluorescence Resonance Energy Transfer , Genetic Predisposition to Disease , HEK293 Cells , Humans , Malignant Hyperthermia/drug therapy , Malignant Hyperthermia/metabolism , Microscopy, Fluorescence , Muscle Relaxants, Central/pharmacology , Mutagenesis, Site-Directed , Myopathy, Central Core/metabolism , Propanolamines/pharmacology , Protein Conformation , Rabbits , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...