Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Biosci Bioeng ; 132(2): 148-153, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33994113

ABSTRACT

Neurospora crassa has been generally recognized as a safe organism and possesses a remarkable ability to produce yellow-to-orange carotenoids. The present work mainly explored the potential mechanism of exogenous oleic acid on promoting lycopene production in N. crassa. Carbon flux was conducively channelized into the mevalonate metabolic pathway to synthesize more lycopene, associating with the increased levels of acetyl-CoA, NADPH and factors related to the mevalonate pathway. Additionally, exogenous oleic acid boosted the intracellular triacylglycerol production through de novo and ex novo fatty acid synthesis pathways, which contributed to improving the accumulation of lycopene via lipid bodies. Further, the regulated fatty acid profile also enhanced the storage capacity of lipid bodies. Consequently, this study provided an effective strategy to enhance the lycopene production in N. crassa by adding oleic acid to the culture medium and elucidated an extraordinary insight into the potential mechanism.


Subject(s)
Neurospora crassa , Carotenoids , Lycopene , Mevalonic Acid , Oleic Acid
2.
J Agric Food Chem ; 68(31): 8255-8262, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32643946

ABSTRACT

Medium- and long-chain triacylglycerols (MLCTs) were synthesized from rapeseed oil (RO), one kind of commonly used edible long-chain triacylglycerols (TGs), and then delivered to high-fat diet (HFD)-induced obese rats. Compared with RO, MLCT consumption exhibited more potent effects on reducing body and tissue weight gains, plasma TG, and total cholesterol (TC) levels and on improving hepatic TG, TC, fatty acid synthase, acetyl-CoA carboxylase, and lipoprteinlipase contents. Meanwhile, lower amounts of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1, and endotoxin in plasma, lower levels of interleukin-6 and TNF-α, and higher levels of interleukin-10 in both livers and white adipose tissues were detected in MLCT-fed rats. MLCT intake also remarkably suppressed the size of adipocytes and the number of macrophages. In conclusion, our study suggested that the interesterified MLCT was more efficacious in improving the lipid metabolism and inflammation in HFD-induced obese rats than RO.


Subject(s)
Lipid Metabolism , Obesity/drug therapy , Triglycerides/chemistry , Triglycerides/metabolism , Adipose Tissue, White/immunology , Adipose Tissue, White/metabolism , Animals , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Esterification , Humans , Liver/immunology , Liver/metabolism , Male , Obesity/etiology , Obesity/immunology , Obesity/metabolism , Rapeseed Oil/chemistry , Rapeseed Oil/metabolism , Rats , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
3.
J Food Sci ; 85(7): 2164-2170, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32572963

ABSTRACT

Sanguisorba officinalis L. (family Rosaceae, subfamily Rosoideae) is a plant found throughout Southern Europe, Northern Africa, and Eastern Asia. This study demonstrated the antibacterial activity of a purified polyphenolic extract (PPE) from S. officinalis L. against Bacillus subtilis using growth inhibitory and apoptosis assays, and investigated the antibacterial mechanism responsible for changes in cell membrane properties. Fourier transform infrared spectroscopy suggested that PPE altered the cell wall and membrane properties of B. subtilis. Further determination of cell membrane integrity and permeability revealed that B. subtilis membrane integrity was more severely damaged by PPE at the minimum inhibitory concentration (MIC) than at the minimum bactericidal concentrati on (MBC). Instead, PPE at the MBC reduced cell membrane fluidity by significantly decreasing the proportion of anteiso- and iso-branched phospholipid fatty acids (PLFAs) from 64.17 ± 0.28% and 27.23 ± 0.03% in the control to 5.57 ± 1.06% and 6.00 ± 1.40%, respectively (P < 0.001). Scanning electron microscopy revealed different effects of PPE on cell morphology, demonstrating that, at the MIC and MBC, PPE exerted antibacterial activity by disrupting the cell membrane and reducing cell membrane fluidity, respectively. Consequently, this study elucidated changes in the bacterial membrane due to exposure to PPE and its potential use as an antimicrobial agent. PRACTICAL APPLICATION: The abuse of synthetic chemical preservatives raises food safety concerns; however, plant-derived polyphenolic compounds may be a safe and effective alternative. This study demonstrated the strong antibacterial activity of a purified polyphenolic extract (PPE) of Sanguisorba officinalis L. and revealed its antibacterial mechanism against Bacillus subtilis, suggesting that it may provide a useful antimicrobial agent in food industry applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Cell Membrane/metabolism , Fatty Acids/metabolism , Phospholipids/metabolism , Plant Extracts/pharmacology , Polyphenols/pharmacology , Sanguisorba/chemistry , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Cell Membrane/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Fatty Acids/chemistry , Food Preservatives/pharmacology , Microbial Sensitivity Tests , Phospholipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...