Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 6(30): 29929-46, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26338966

ABSTRACT

Colorectal cancer (CRC) represents the third most common cancer in males and second in females worldwide. Here, we performed a quantitative 8-plex iTRAQ proteomics analysis of the secreted proteins from five colonic fibroblast cultures and three colon cancer epithelial cell lines. We identified 1114 proteins at 0% FDR, including 587 potential secreted proteins. We further recognized 116 fibroblast-enriched proteins which were significantly associated with cell movement, angiogenesis, proliferation and wound healing, and 44 epithelial cell-enriched proteins. By interrogation of Oncomine database, we found that 20 and 8 fibroblast-enriched proteins were up- and downregulated in CRC, respectively. Western blots confirmed the fibroblast-specific secretion of filamin C, COL6A3, COL4A1 and spondin-2. Upregulated mRNA and stroma expression of COL6A3 in CRC, which were revealed by Oncomine analyses and tissue-microarray-immunohistochemistry, indicated poor prognosis. COL6A3 expression was significantly associated with Dukes stage, T stage, stage, recurrence and smoking status. Circulating plasma COL6A3 in CRC patients was upregulated significantly comparing with healthy peoples. Receiver operating characteristic curve analysis revealed that COL6A3 has better predictive performance for CRC with an area under the curve of 0.885 and the best sensitivity/specificity of 92.9%/81.3%. Thus we demonstrated that COL6A3 was a potential diagnosis and prognosis marker of CRC.


Subject(s)
Biomarkers, Tumor/metabolism , Collagen Type VI/metabolism , Colorectal Neoplasms/metabolism , Proteomics/methods , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Collagen Type VI/blood , Collagen Type VI/genetics , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Female , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Immunohistochemistry , Male , Middle Aged , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
2.
J Proteomics ; 110: 155-71, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25118038

ABSTRACT

Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. BIOLOGICAL SIGNIFICANCE: In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel insights into the molecular signatures and the modulatory role of colon cancer associated fibroblasts, and establish a valuable resource for the development of therapeutic agents or novel clinic biomarker.


Subject(s)
Colon/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Fibroblasts/metabolism , Metabolome , Neoplasm Proteins/metabolism , Proteome/metabolism , Cell Proliferation , Colon/pathology , Fibroblasts/pathology , Neoplasm Invasiveness , Neoplasm Proteins/chemistry , Proteome/chemistry , Tumor Cells, Cultured , Tumor Microenvironment
3.
Data Brief ; 1: 19-24, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26217680

ABSTRACT

The tumor cell proliferation, migration and invasion were influenced by the interaction between the cancer cells and their microenvironment. In current study, we established two pairs of the primary fibroblast cultures from colorectal adenocarcinoma tissues and the normal counterparts and identified 227 proteins in the colonic fibroblast secretomes; half of these proteins were novel. The mass spectrometry data and analyzed results presented here provide novel insights into the molecular characteristics and modulatory role of colon cancer associated fibroblasts. The data is related to "Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation" by Chen et al. [1].

SELECTION OF CITATIONS
SEARCH DETAIL
...