Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(12): e1010545, 2022 12.
Article in English | MEDLINE | ID: mdl-36512630

ABSTRACT

Replication fork reversal which restrains DNA replication progression is an important protective mechanism in response to replication stress. PARP1 is recruited to stalled forks to restrain DNA replication. However, PARP1 has no helicase activity, and the mechanism through which PARP1 participates in DNA replication restraint remains unclear. Here, we found novel protein-protein interactions between PARP1 and DNA translocases, including HLTF, SHPRH, ZRANB3, and SMARCAL1, with HLTF showing the strongest interaction among these DNA translocases. Although HLTF and SHPRH share structural and functional similarity, it remains unclear whether SHPRH contains DNA translocase activity. We further identified the ability of SHPRH to restrain DNA replication upon replication stress, indicating that SHPRH itself could be a DNA translocase or a helper to facilitate DNA translocation. Although hydroxyurea (HU) and MMS induce different types of replication stress, they both induce common DNA replication restraint mechanisms independent of intra-S phase activation. Our results suggest that the PARP1 facilitates DNA translocase recruitment to damaged forks, preventing fork collapse and facilitating DNA repair.


Subject(s)
DNA-Binding Proteins , Transcription Factors , DNA-Binding Proteins/genetics , Transcription Factors/genetics , DNA Repair/genetics , DNA Replication/genetics , DNA/genetics , DNA Damage/genetics
2.
Proteins ; 90(7): 1486-1492, 2022 07.
Article in English | MEDLINE | ID: mdl-35246878

ABSTRACT

Protein multiple sequence alignment information has long been important features to know about functions of proteins inferred from related sequences with known functions. It is therefore one of the underlying ideas of Alpha fold 2, a breakthrough study and model for the prediction of three-dimensional structures of proteins from their primary sequence. Our study used protein multiple sequence alignment information in the form of position-specific scoring matrices as input. We also refined the use of a convolutional neural network, a well-known deep-learning architecture with impressive achievement on image and image-like data. Specifically, we revisited the study of prediction of adenosine triphosphate (ATP)-binding sites with more efficient convolutional neural networks. We applied multiple convolutional window scanning filters of a convolutional neural network on position-specific scoring matrices for as much as useful information as possible. Furthermore, only the most specific motifs are retained at each feature map output through the one-max pooling layer before going to the next layer. We assumed that this way could help us retain the most conserved motifs which are discriminative information for prediction. Our experiment results show that a convolutional neural network with not too many convolutional layers can be enough to extract the conserved information of proteins, which leads to higher performance. Our best prediction models were obtained after examining them with different hyper-parameters. Our experiment results showed that our models were superior to traditional use of convolutional neural networks on the same datasets as well as other machine-learning classification algorithms.


Subject(s)
Adenosine Triphosphate , Carrier Proteins , Algorithms , Binding Sites , Machine Learning , Neural Networks, Computer , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...