Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Appl Gerontol ; : 7334648241245487, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652874

ABSTRACT

Older age is associated with reduced social networks while social skill abilities are important assets for older people to cope with these situations. To better understand older people's social skill ability and important demographic correlates, the present cross-sectional survey research interviewed 1000 Taiwanese older volunteers from 73 community care centers. Findings of a mixed model indicated that education and serving area outweighed other demographic factors significantly correlated with older volunteers' social skill ability. Latent class analyses further identified different latent ability groups for different education (high vs. low) or serving-area (urban vs. suburban) older volunteers. Specifically, low-education or suburban volunteers were correlated with disadvantageous social skill profiles. Notably, the suburban eclectic ability group exhibited a skill pattern signifying the risk of loneliness. Overall, the findings called for further investigation into the relationship between older people's socioeconomic factors (e.g., education and serving area) and their social skill ability.

2.
J Food Drug Anal ; 32(1): 103-111, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38526588

ABSTRACT

Magnoliae Officinalis Cortex (MOC), an herbal drug, contains polyphenolic lignans mainly magnolol (MN) and honokiol (HK). Methotrexate (MTX), a critical drug for cancers and autoimmune deseases, is a substrate of multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). This study investigated the effect of coadministration of MOC on the pharmacokinetics of MTX and relevant mechanisms. Sprague-Dawley rats were orally administered MTX alone and with single dose (2.0 and 4.0 g/kg) and repeated seven doses of MOC (2.0 g/kg thrice daily for 2 days, the 7th dose given at 0.5 h before MTX). The serum concentrations of MTX were determined by a fluorescence polarization immunoassay. The results showed that a single dose of MOC at 2.0 g/kg significantly increased the AUC0-t and MRT of MTX by 352% and 308%, and a single dose at 4.0 g/kg significantly enhanced the AUC0-t and MRT by 362% and 291%, respectively. Likewise, repeated seven doses of MOC at 2.0 g/kg significantly increased the AUC0-t and MRT of MTX by 461% and 334%, respectively. Mechanism studies indicated that the function of MRP2 was significantly inhibited by MN, HK and the serum metabolites of MOC (MOCM), whereas BCRP was not inhibited by MOCM. In conclusion, coadministration of MOC markedly enhanced the systemic exposure and mean residence time of MTX through inhibiting the MRP2-mediated excretion of MTX.


Subject(s)
Allyl Compounds , Biphenyl Compounds , Herb-Drug Interactions , Lignans , Multidrug Resistance-Associated Protein 2 , Phenols , Rats , Animals , Rats, Sprague-Dawley , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Methotrexate/pharmacology , Neoplasm Proteins
3.
Ocul Surf ; 29: 301-310, 2023 07.
Article in English | MEDLINE | ID: mdl-37268293

ABSTRACT

PURPOSE: Human corneal endothelial cells (HCECs) play a significant role in maintaining visual function. However, these cells are notorious for their limited proliferative capacity in vivo. Current treatment of corneal endothelial dysfunction resorts to corneal transplantation. Herein we describe an ex vivo engineering method to manufacture HCEC grafts suitable for transplantation through reprogramming into neural crest progenitors. METHODS: HCECs were isolated by collagenase A from stripped Descemet membrane of cadaveric corneoscleral rims, and induced reprogramming via knockdown with p120 and Kaiso siRNAs on collagen IV-coated atelocollagen. Engineered HCEC grafts were released after assessing their identity, potency, viability, purity and sterility. Phase contrast was used for monitoring cell shape, graft size, and cell density. Immunostaining was used to determine the normal HCEC phenotype with expression of N-cadherin, ZO-1, ATPase, acetyl-α-tubulin, γ-tubulin, p75NTR, α-catenin, ß-catenin, and F-actin. Stability of manufactured HCEC graft was evaluated after transit and storage for up to 3 weeks. The pump function of HCEC grafts was measured by lactate efflux. RESULTS: One HCEC graft suitable for corneal transplantation was generated from 1/8th of the donor corneoscleral rim with normal hexagonal cell shape, density, and phenotype. The manufactured grafts were stable for up to 3 weeks at 37 °C or up to 1 week at 22 °C in MESCM medium and after transcontinental shipping at room temperature by retaining normal morphology (hexagonal, >2000 cells/mm2, >8 mm diameter), phenotype, and pump function. CONCLUSIONS: This regenerative strategy through knockdown with p120 and Kaiso siRNAs can be used to manufacture HCEC grafts with normal phenotype, morphology and pump function following prolonged storage and shipping.


Subject(s)
Corneal Transplantation , Endothelium, Corneal , Humans , Endothelium, Corneal/metabolism , Endothelium, Corneal/transplantation , Endothelial Cells , Cells, Cultured , Cornea
4.
Bot Stud ; 64(1): 11, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37079162

ABSTRACT

BACKGROUND: Bakanae disease caused by Fusarium fujikuroi is an increasing threat to rice production. The infected plants show symptoms such as elongation, slenderness, chlorosis, a large leaf angle, and even death. Bakanae disease is traditionally managed by seed treatment. However, fungicide-resistant F. fujikuroi isolates have emerged in several Asian areas, including Taiwan. This study aimed to identify new bakanae resistance quantitative trait loci (QTLs) and provide molecular markers to assist future breeding. RESULTS: A population of F2:9 recombinant inbred lines (RILs) was derived from the cross between an elite japonica Taiwanese cultivar 'Taikeng 16 (TK16)' and an indica variety 'Budda'. 'Budda' was found highly resistant to all 24 representative isolates of the F. fujikuroi population in Taiwan. For the RIL population, 6,492 polymorphic single nucleotide polymorphisms (SNPs) spanning the rice genome were obtained by genotyping-by-sequencing (GBS) technique, and the disease severity index (DSI) was evaluated by inoculation with a highly virulent F. fujikuroi isolate Ff266. Trait-marker association analysis of 166 RILs identified two QTLs in 'Budda'. qBK2.1 (21.97-30.15 Mb) is a novel and first bakanae resistance QTL identified on chromosome 2. qBK1.8 (5.24-8.66 Mb) partially overlaps with the previously reported qBK1.3 (4.65-8.41 Mb) on chromosome 1. The log of odds (LOD) scores of qBK1.8 and qBK2.1 were 4.75 and 6.13, accounting for 4.9% and 8.1% of the total phenotypic variation, respectively. 64 RILs carrying both qBK1.8 and qBK2.1 showed lower DSI (7%) than the lines carrying only qBK1.8 (15%), only qBK2.1 (13%), or none of the two QTLs (21%). For the future application of identified QTLs, 11 KBioscience competitive allele-specific PCR (KASP) markers and 3 insertion-deletion (InDel) markers were developed. CONCLUSIONS: Compared to other important rice diseases, knowledge of bakanae resistance has been insufficient, which limited the development and deployment of resistant cultivars. The discovery of qBK2.1 has provided a new source of bakanae resistance. The resistant RILs inheriting good plant type, good taste, and high yield characteristics from 'TK16' can be used as good resistance donors. Our newly developed markers targeting qBK2.1 and qBK1.8 can also serve as an important basis for future fine-mapping and resistance breeding.

5.
Front Public Health ; 10: 862388, 2022.
Article in English | MEDLINE | ID: mdl-35669744

ABSTRACT

Early life adversity can significantly impact child development and health outcomes throughout the life course. With the COVID-19 pandemic exacerbating preexisting and introducing new sources of toxic stress, social programs that foster resilience are more necessary now than ever. The Helping Us Grow Stronger (HUGS/Abrazos) program fills a crucial need for protective buffers during the COVID-19 pandemic, which has escalated toxic stressors affecting pregnant women and families with young children. HUGS/Abrazos combines patient navigation, behavioral health support, and innovative tools to ameliorate these heightened toxic stressors. We used a mixed-methods approach, guided by the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework, to evaluate the implementation of the HUGS/Abrazos program at Massachusetts General Hospital from 6/30/2020-8/31/2021. Results of the quality improvement evaluation revealed that the program was widely adopted across the hospital and 392 unique families were referred to the program. The referred patients were representative of the communities in Massachusetts disproportionately affected by the COVID-19 pandemic. Furthermore, 79% of referred patients followed up with the initial referral, with sustained high participation rates throughout the program course; and they were provided with an average of four community resource referrals. Adoption and implementation of the key components in HUGS/Abrazos were found to be appropriate and acceptable. Furthermore, the implemented program remained consistent to the original design. Overall, HUGS/Abrazos was well adopted as an emergency relief program with strong post-COVID-19 applicability to ameliorate continuing toxic stressors while decreasing burden on the health system.


Subject(s)
COVID-19 , COVID-19/epidemiology , Child , Child, Preschool , Female , Humans , Massachusetts/epidemiology , Pandemics , Pregnancy , Quality Improvement
6.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885972

ABSTRACT

Breast cancer resistance protein (BCRP), one of the ATP-binding cassette (ABC) transporters, was associated with the multidrug resistance (MDR) of chemotherapy. Magnolol (MN) and honokiol (HK) are major bioactive polyphenols of Magnolia officinalis. This study investigated the effects of MN and HK on the function and expression of BCRP for the purpose of developing BCRP inhibitor to overcome MDR. Cell lines including MDCKII-BCRP and MDCKII-WT were used for evaluating the function and expression of BCRP. The results showed that MN (100-12.5 µM) and HK (100-12.5 µM) significantly decreased the function of BCRP by 80~12% and 67~14%, respectively. In addition, MN and HK were verified as substrates of BCRP. Furthermore, MN and HK reduced the protein expression of BCRP, and inhibited the phosphorylation of epidermal growth factor receptor (EGFR) and phosphatidylinositol 3-kinase (PI3K). In conclusion, both MN and HK decreased the function and expression of BCRP via EGFR/PI3K signaling pathway. Therefore, both compounds were promising candidates for reversing the MDR of chemotherapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Biphenyl Compounds/pharmacology , Lignans/pharmacology , Magnolia/chemistry , Neoplasm Proteins/metabolism , Plant Extracts/pharmacology , Polyphenols/pharmacology , Signal Transduction/drug effects , Animals , Biphenyl Compounds/metabolism , Cell Survival/drug effects , Dogs , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , Lignans/metabolism , Madin Darby Canine Kidney Cells , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Plant Extracts/metabolism , Polyphenols/metabolism
7.
Cell Oncol (Dordr) ; 44(5): 1133-1150, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34339014

ABSTRACT

PURPOSE: Urinary bladder urothelial carcinoma (UBUC) is a common malignant disease, and its high recurrence rates impose a heavy clinical burden. The objective of this study was to identify signaling pathways downstream of epithelial membrane protein 2 (EMP2), which induces cytostasis and apoptosis in UBUC. METHODS: A series of in vitro and in vivo assays using different UBUC-derived cell lines and mouse xenograft models were performed, respectively. In addition, primary UBUC specimens were evaluated by immunohistochemistry. RESULTS: Exogenous expression of EMP2 in J82 UBUC cells significantly decreased DNA replication and altered the expression levels of several TGFß signaling-related proteins. EMP2 knockdown in BFTC905 UBUC cells resulted in opposite effects. EMP2-dysregulated cell cycle progression was found to be mediated by the TGFß/TGFBR1/SP1 family member SMAD. EMP2 or purinergic receptor P2X7 (P2RX7) gene expression upregulation induced apoptosis via both intrinsic and extrinsic pathways. In 242 UBUC patient samples, P2RX7 protein levels were found to be significantly and positively correlated with EMP2 protein levels. Low P2RX7 levels conferred poor disease-specific and metastasis-free survival rates, and significantly decreased apoptotic cell rates. EMP2 was found to physically interact with P2RX7. In the presence of a P2RX7 agonist, BzATP, overexpression of both EMP2 and P2RX7 significantly increased apoptotic cell rates compared to overexpression of EMP2 or P2RX7 alone. CONCLUSIONS: EMP2 induces cytostasis via the TGFß/SMAD/SP1 axis and recruits P2RX7 to enhance apoptosis in UBUC. Our data provide new insights that may be employed for the design of UBUC targeting therapies.


Subject(s)
Apoptosis/genetics , Carcinoma, Transitional Cell/genetics , Cell Proliferation/genetics , Membrane Glycoproteins/genetics , Proteins/genetics , Receptors, Purinergic P2X7/genetics , Urinary Bladder Neoplasms/genetics , Animals , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Immunoblotting , Membrane Glycoproteins/metabolism , Mice, Inbred NOD , Mice, SCID , Proteins/metabolism , Receptors, Purinergic P2X7/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Smad Proteins/genetics , Smad Proteins/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transplantation, Heterologous , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
8.
Angew Chem Int Ed Engl ; 60(35): 19144-19154, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34062043

ABSTRACT

We investigated the material properties of Cremonese soundboards using a wide range of spectroscopic, microscopic, and chemical techniques. We found similar types of spruce in Cremonese soundboards as in modern instruments, but Cremonese spruces exhibit unnatural elemental compositions and oxidation patterns that suggest artificial manipulation. Combining analytical data and historical information, we may deduce the minerals being added and their potential functions-borax and metal sulfates for fungal suppression, table salt for moisture control, alum for molecular crosslinking, and potash or quicklime for alkaline treatment. The overall purpose may have been wood preservation or acoustic tuning. Hemicellulose fragmentation and altered cellulose nanostructures are observed in heavily treated Stradivari specimens, which show diminished second-harmonic generation signals. Guarneri's practice of crosslinking wood fibers via aluminum coordination may also affect mechanical and acoustic properties. Our data suggest that old masters undertook materials engineering experiments to produce soundboards with unique properties.

9.
Biophys J ; 120(11): 2276-2286, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33812848

ABSTRACT

MJ0366 from Methanocaldococcus jannaschii is the smallest topologically knotted protein known to date. 92 residues in length, MJ0366 ties a trefoil (31) knot by threading its C-terminal helix through a buttonhole formed by the remainder of the secondary structure elements. By generating a library of point mutations at positions pertinent to the knot formation, we systematically evaluated the contributions of individual residues to the folding stability and kinetics of MJ0366. The experimental Φ-values were used as restraints to computationally generate an ensemble of conformations that correspond to the transition state of MJ0366, which revealed several nonnative contacts. The importance of these nonnative contacts in stabilizing the transition state of MJ0366 was confirmed by a second round of mutagenesis, which also established the pivotal role of F15 in stapling the network of hydrophobic interactions around the threading C-terminal helix. Our converging experimental and computational results show that, despite the small size, the transition state of MJ0366 is formed at a very late stage of the folding reaction coordinate, following a polarized pathway. Eventually, the formation of extensive native contacts, as well as a number of nonnative ones, leads to the threading of the C-terminal helix that defines the topological knot.


Subject(s)
Protein Folding , Proteins , Kinetics , Methanocaldococcus , Protein Conformation , Proteins/genetics , Thermodynamics
10.
Stem Cells ; 39(3): 280-295, 2021 03.
Article in English | MEDLINE | ID: mdl-33373496

ABSTRACT

Quiescence and self-renewal of human corneal epithelial progenitor/stem cells (LEPC) are regulated by the limbal niche, presumably through close interaction with limbal (stromal) niche cells (LNC). Paired box homeotic gene 6 (Pax6), a conserved transcription factor essential for eye development, is essential for proper differentiation of limbal and corneal epithelial stem cells. Pax6 haploinsufficiency causes limbal stem cell deficiency, which leads to subsequent corneal blindness. We previously reported that serial passage of nuclear Pax6+ LNC resulted in the gradual loss of nuclear Pax6+ and neural crest progenitor status, the latter of which was reverted upon recovery of Pax6. These findings suggest Pax6 plays a pivotal role in supporting the self-renewal of LEPC in limbal niche. Herein, we show that HC-HA/PTX3, a unique matrix purified from amniotic membrane (AM) and consists of heavy chain 1of inter-α-trypsin inhibitor covalently linked to hyaluronic acid and complexed with pentraxin 3, is capable of reverting senescent LNC to nuclear Pax6+ neural crest progenitors that support self-renewal of LEPC. Such reversion is causally linked to early cell aggregation mediated by activation of C-X-C chemokine receptor type 4 (CXCR4)-mediated signaling followed by activation of bone morphogenetic protein (BMP) signaling. Furthermore, CXCR4-mediated signaling, but not BMP signaling, controls recovery of the nuclear Pax6+ neural crest progenitors. These findings not only explain why AM helps in vivo and ex vivo expansion of human LEPC, but they also illuminate the potential role of HC-HA/PTX3 as a surrogate matrix niche that complements stem cell-based therapies in regenerative medicine.


Subject(s)
C-Reactive Protein/metabolism , Limbus Corneae/cytology , PAX6 Transcription Factor/metabolism , Serum Amyloid P-Component/metabolism , Stem Cell Niche/physiology , Aged , Cell Differentiation/physiology , Cells, Cultured , Corneal Diseases/genetics , Epithelial Cells/metabolism , Epithelium, Corneal/cytology , Humans , Middle Aged , Neural Crest/cytology , Stem Cells/metabolism
11.
Opt Express ; 28(26): 38831-38841, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379443

ABSTRACT

Spruce is the commonly-used tonewood for the top plate of violin-family instruments, such as violins and cellos. The wood properties can critically determine the acoustic quality. It's been shown the wood of famous old instruments differ from modern ones due to chemical treatment and aging. To reveal the differences microscopically in both spatial and spectral domains, a two-photon hyperspectral system has been applied to investigate the autofluorescence and second harmonic generation within wood samples. Not only the cellular structures were observed through optical sectioning, but the spectral variations were revealed among different age wood samples and different cellular structures.

12.
Opt Express ; 28(26): 39781-39789, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379520

ABSTRACT

We report a highly efficient polariton organic light-emitting diode (POLED) based on an intracavity pumping architecture, where an absorbing J-aggregate dye film is used to generate polariton modes and a red fluorescent OLED is used for radiative pumping of emission from the lower polariton (LP) branch. To realize the device with large-area uniformity and adjustable coupling strength, we develop a spin-coating method to achieve high-quality J-aggregate thin films with controlled thickness and absorption. From systematic studies of the devices with different J-aggregate film thicknesses and OLED injection layers, we show that the J-aggregate film and the pump OLED play separate roles in determining the coupling strength and electroluminescence efficiency, and can be simultaneously optimized under a cavity design with a good LP-OLED emission overlap for effective radiative pumping. By increasing the absorption with thick J-aggregate film and improving the electron injection of pump OLED with Li2CO3 interlayer, we demonstrate the POLED with a large Rabi splitting energy of 192 meV and a maximum external quantum efficiency of 1.2%, a record efficiency of POLEDs reported so far. This POLED architecture can be generally applied for exploration of various organic materials to realize novel polariton devices and electrically pumped lasers.

13.
Rice (N Y) ; 13(1): 65, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32910281

ABSTRACT

BACKGROUND: Bakanae is a seedborne disease caused by Fusarium fujikuroi. Rice seedlings emerging from infected seeds can show diverse symptoms such as elongated and slender stem and leaves, pale coloring, a large leaf angle, stunted growth and even death. Little is known about rice defense mechanisms at early stages of disease development. RESULTS: This study focused on investigating early defenses against F. fujikuroi in a susceptible cultivar, Zerawchanica karatals (ZK), and a resistant cultivar, Tainung 67 (TNG67). Quantitative PCR revealed that F. fujikuroi colonizes the root and stem but not leaf tissues. Illumina sequencing was conducted to analyze the stem transcriptomes of F. fujikuroi-inoculated and mock-inoculated ZK and TNG67 plants collected at 7 days post inoculation (dpi). More differentially expressed genes (DEGs) were identified in ZK (n = 169) than TNG67 (n = 118), and gene ontology terms related to transcription factor activity and phosphorylation were specifically enriched in ZK DEGs. Among the complex phytohormone biosynthesis and signaling pathways, only DEGs involved in the jasmonic acid (JA) signaling pathway were identified. Fourteen DEGs encoding pattern-recognition receptors, transcription factors, and JA signaling pathway components were validated by performing quantitative reverse transcription PCR analysis of individual plants. Significant repression of jasmonate ZIM-domain (JAZ) genes (OsJAZ9, OsJAZ10, and OsJAZ13) at 3 dpi and 7 dpi in both cultivars, indicated the activation of JA signaling during early interactions between rice and F. fujikuroi. Differential expression was not detected for salicylic acid marker genes encoding phenylalanine ammonia-lyase 1 and non-expressor of pathogenesis-related genes 1. Moreover, while MeJA did not affect the viability of F. fujikuroi, MeJA treatment of rice seeds (prior to or after inoculation) alleviated and delayed bakanae disease development in susceptible ZK. CONCLUSIONS: Different from previous transcriptome studies, which analyzed the leaves of infected plants, this study provides insights into defense-related gene expression patterns in F. fujikuroi-colonized rice stem tissues. Twelve out of the 14 selected DEGs were for the first time shown to be associated with disease resistance, and JA-mediated resistance was identified as a crucial component of rice defense against F. fujikuroi. Detailed mechanisms underlying the JA-mediated bakanae resistance and the novel defense-related DEGs are worthy of further investigation.

14.
Exp Eye Res ; 199: 108181, 2020 10.
Article in English | MEDLINE | ID: mdl-32795525

ABSTRACT

Homeostasis of the corneal epithelium is ultimately maintained by stem cells that reside in a specialized microenvironment within the corneal limbus termed palisades of Vogt. This limbal niche nourishes, protects, and regulates quiescence, self-renewal, and fate decision of limbal epithelial stem/progenitor cells (LEPCs) toward corneal epithelial differentiation. This review focuses on our current understanding of the mechanism by which limbal (stromal) niche cells (LNCs) regulate the aforementioned functions of LEPCs. Based on our discovery and characterization of a unique extracellular matrix termed HC-HA/PTX3 (Heavy chain (HC1)-hyaluronan (HA)/pentraxin 3 (PTX3) complex, "-" denotes covalent linkage; "/" denotes non-covalent binding) in the birth tissue, i.e., amniotic membrane and umbilical cord, we put forth a new paradigm that HC-HA/PTX3 serves as a surrogate matrix niche by maintaining the in vivo nuclear Pax6+ neural crest progenitor phenotype to support quiescence and self-renewal but prevent corneal fate decision of LEPCs. This new paradigm helps explain how limbal stem cell deficiency (LSCD) develops in aniridia due to Pax6-haplotype deficiency and further explains why transplantation of HC-HA/PTX3-containing amniotic membrane prevents LSCD in acute chemical burns and Stevens Johnson syndrome, augments the success of autologous LEPCs transplantation in patients suffering from partial or total LSCD, and assists ex vivo expansion (engineering) of a graft containing LEPCs. We thus envisage that this new paradigm based on regenerative matrix HC-HA/PTX3 as a surrogate niche can set a new standard for regenerative medicine in and beyond ophthalmology.


Subject(s)
C-Reactive Protein/metabolism , Corneal Diseases/genetics , Limbus Corneae/metabolism , Serum Amyloid P-Component/metabolism , Stem Cell Niche , Cell Differentiation , Cells, Cultured , Corneal Diseases/metabolism , Corneal Diseases/pathology , Humans , Limbus Corneae/pathology
15.
Phytopathology ; 110(12): 1934-1945, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32689901

ABSTRACT

Bakanae disease in rice can cause abnormal elongation of the stem and leaves, development of adventitious roots, a larger leaf angle, and even death. Little is known about the infection, colonization, and distribution of Fusarium fujikuroi in rice plants across different growth stages. In this study, microscopic observation and quantitative real-time PCR were combined to investigate the pathogenesis of bakanae, using artificially inoculated seedlings of a susceptible rice cultivar, Zerawchanica karatals (ZK), a resistant cultivar, Tainung 67 (TNG67), naturally infected adult field plants (cultivars Kaohsiung 139, Taikeng 2, and Tainan 11), and an F. fujikuroi isolate expressing green fluorescent protein. In rice seedlings, F. fujikuroi hyphae were found to directly penetrate the epidermis of basal stems and roots, then extend inter- and intracellularly to invade the vascular bundles. Occlusion of vascular bundles and radial hyphal expansion from vascular bundles to surrounding parenchyma were observed in adult plants. Analysis of consecutive 3-cm segments of the whole plant revealed that F. fujikuroi was largely confined to the embryo, basal stem, and basal roots in seedlings, and distributed unevenly in the lower aerial parts (including nodes and internodes) of adult plants. The elongation and development of adventitious roots did not necessarily correlate with the amount of F. fujikuroi in diseased plants. Treatment of rice seeds with gibberellic acid-3 (GA3) at 0.5 mg/liter resulted in significantly more elongation of ZK than TNG67 seedlings, suggesting that the susceptibility of ZK to bakanae is associated with its higher sensitivity to GA3.


Subject(s)
Fusarium , Oryza , Plant Diseases , Seedlings
16.
Cureus ; 12(5): e8368, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32617239

ABSTRACT

Background Women physicians continue to comprise the minority of leadership roles in Academic Family Medicine (AFM) faculty across North American medical schools. Our study quantified the current state of gender disparity by analyzing academic position, leadership ranking, and research productivity. Methods We generated a database for 6,746 AFM faculty members. Gender and academic profiles were obtained for 2,892 academic ranks and 1,706 leadership roles by searching faculty listings enlisted in Fellowship and Residency Electronic Interactive Database (FREIDA) and Canadian Resident Matching Service (CaRMS). To measure research productivity, we obtained bibliometric data: h-index, citations, and tenure from 2,383 faculty members using Elsevier's SCOPUS archives. Data analysis and h-index were formulated using Stata version 14.2 (StataCorp LP, College Station, TX). Results Our results indicated that women hold 46.11% (3,110/6,746) of faculty positions. The proportional composition decreased with increasing academic ranking (49.84% assistant, 46.78% associate, and 41.5% full professor). The same decreasing trend was demonstrated with leadership rank (57.14% minor leadership, 47.65% second-in-command, and 36.61 first-in-command). Compared to their gender counterparts, women in AFM demonstrated lower publication productivity as measured by citation number (p=0.04) and years of study (p=0.008). The final prediction equation model after multivariable analyses included gender, publications, citations, country of graduation, and years of active research (p<0.05). Conclusions The composition of academic family medicine faculty members included in this study demonstrated gender disparity. Inclusivity initiatives and policies to tackle the issue of female retention, promotion, and recruitment need to be further explored.

17.
Invest Ophthalmol Vis Sci ; 61(5): 62, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32462202

ABSTRACT

Purpose: Fibrosis or scarring is a pathological outcome of wound healing and is characterized by terminally differentiated myofibroblasts. Heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) is a unique matrix component purified from amniotic membrane that exerts an anti-inflammatory effect. Herein, we investigate whether HC-HA/PTX3 can also exert an antiscarring effect. Methods: Human corneal fibroblasts and myofibroblasts were seeded on plastic, immobilized HA or HC-HA/PTX3 or on plastic with or without soluble HA and HC-HA/PTX3 in DMEM+10% FBS, with or without AMD3100 or SB431542 in DMEM+ITS with or without transforming growth factor-ß1 (TGF-ß1). Transcript expression of keratocyte and signaling markers was determined by RT-qPCR. Immunostaining was performed to monitor cytolocalization of signaling markers and α-SMA. Western blotting was used to measure relative protein level. Results: Human corneal fibroblasts and myofibroblasts cultured in or on HC-HA/PTX3, but not HA, were refrained from cytoplasmic expression of αSMA and nuclear translocation of pSMAD2/3 when challenged with exogenous TGF-ß1. Such an antiscarring action by suppressing canonical TGF-ß1 signaling was surprisingly accompanied by phenotypic reversal to keratocan-expressing keratocytes through activation of BMP signaling. Further investigation disclosed that such phenotypic reversal was initiated by cell aggregation mediated by SDF1-CXCR4 signaling highlighted by nuclear translocation of CXCR4 and upregulation of CXCR4 transcript and protein followed by activation of canonical BMP signaling. Conclusions: These findings collectively provide mechanistic understanding explaining how amniotic membrane transplantation exerts an antiscarring action. In addition, HC-HA/PTX3 and derivatives may be developed into a new biologic to treat corneal blindness caused by stromal scar or opacity in the future.


Subject(s)
Bone Morphogenetic Proteins/physiology , C-Reactive Protein/isolation & purification , C-Reactive Protein/physiology , Cell Differentiation , Cornea/cytology , Corneal Keratocytes/cytology , Fibroblasts/cytology , Hyaluronic Acid/physiology , Myofibroblasts/cytology , Serum Amyloid P-Component/isolation & purification , Serum Amyloid P-Component/physiology , Amnion/chemistry , Humans , Signal Transduction
18.
Rice (N Y) ; 12(1): 85, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31754813

ABSTRACT

BACKGROUND: Rice bakanae disease has emerged as a new threat to rice production. In recent years, an increase in the occurrence and severity of bakanae disease has been reported in several areas in Asia. Although bakanae disease affects rice yield and quality, little is known about the genetics of bakanae resistance in rice. The lack of large-scale screens for bakanae resistance in rice germplasm has also limited the development and deployment of resistant varieties. RESULTS: A genome-wide association study (GWAS) was conducted to identify genes/loci conferring bakanae resistance in rice. A total of 231 diverse accessions from Rice Diversity Panel 1 (RDP1) were inoculated with a highly virulent Taiwanese Fusarium fujikuroi isolate and assessed for resistance using two parameters: (1) disease severity index based on visual rating and (2) colonization rate determined by reisolation of F. fujikuroi from the basal stems of infected rice seedlings. We identified 14 quantitative trait loci (QTLs) (10 for disease severity and 4 for colonization rate), including 1 mapped for both parameters. A total of 206 candidate genes were identified within the 14 QTLs, including genes encoding leucine-rich repeat (LRR)-containing and NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) proteins, hormone-related genes, transcription factor genes, ubiquitination-related genes, and oxidase/oxidoreductase genes. In addition, a candidate QTL (qBK1.7) that co-localized with the previously identified QTLs qBK1 and qFfR1, was verified by linkage analysis using a population of 132 recombinant inbred lines derived from IR64 x Nipponbare. GWAS delineated qBK1.7 to a region of 8239 bp containing three genes. Full-length sequencing across qBK1.7 in 20 rice accessions revealed that the coding regions of two LRR-containing genes Os01g0601625 and Os01g0601675 may be associated with bakanae resistance. CONCLUSIONS: This study facilitates the exploitation of bakanae resistance resources in RDP1. The information on the resistance performance of 231 rice accessions and 14 candidate QTLs will aid efforts to breed resistance to bakanae and uncover resistance mechanisms. Quantification of the level of F. fujikuroi colonization in addition to the conventional rating of visual symptoms offers new insights into the genetics of bakanae resistance.

19.
J Dent Sci ; 14(3): 281-287, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31528256

ABSTRACT

BACKGROUND/PURPOSE: Macrophages participate in the periapical inflammation with pro-inflammatory M1 cells and anti-inflammatory M2 cells. Gas6/Axl signal is the responsible pathway for the activation of M1 and polarization of M2. The aim of this study was to compare the number of CD16+ M1 cells, CD206+ M2 cells, and Gas6/Axl expression between apical granulomas and radicular cysts. MATERIALS AND METHODS: Twenty-four cases of granuloma and twenty of cysts were submitted to immunohistochemistry using anti-CD16 and anti-CD206 antibodies for determining M1 and M2 macrophages and investigating the cells with positive Gas6 and Axl expression. RESULTS: There were more numerous of M1 macrophages in radicular cysts (175.9 ±â€¯87.7) compared to apical granuloma (116.6 ±â€¯55.8), and M2 macrophages was higher in cysts (204.0 ±â€¯97.6) than granuloma (152.9 ±â€¯64.6). The level of Gas6/Axl expression were similar. There was a significant different in M1 macrophage (P = 0.014) between two diagnosis. In patients with or without root resorption, the number of M1 were 194.6 ±â€¯57.2 compared with 139.1 ±â€¯79.6. The number of M2 were 241.7 ±â€¯81.4 and 164.6 ±â€¯77.1. The expression of Axl was stronger in root resorption patients (191.1 ±â€¯43.6), but the tendency in Gas6 expression was similar. Significant differences were noted in high M2 infiltration and Axl positive lesions. CONCLUSION: It appears that macrophages associated with significantly higher numbers in radicular cysts than apical granuloma. Meanwhile, macrophages and Axl receptor was intensively expressed in patients with root resorption, related to severe inflammation.

20.
Front Psychol ; 10: 1593, 2019.
Article in English | MEDLINE | ID: mdl-31379657

ABSTRACT

This study was performed within the limited framework of computer-game-based educational programs designed to enhance creativity. Furthermore, the utilization of mindful learning and moderators such as flow, mastery experience, and self-efficacy, brings this research to the forefront of modern educational practices. The present researchers developed a comprehensive game-based creativity learning program for fifth and sixth grade pupils. Further analyses presented relationship trends between mindful learning experience, flow experience, self-efficacy, and mastery experience. Eighty-three 5th and 6th grade participants undertook the six-week game-based creativity learning program. Upon completion of the experimental instruction, self-evaluation revealed that participants with higher scores on the concerned variables improved more in both creative ability and confidence than their counterparts. Additionally, path model analysis revealed that mindful learning experience was a powerful predictor of both mastery experience and flow experience; it also influenced mastery experience through flow experience and self-efficacy. The findings support the effectiveness of the game-based learning program developed in this study. Moreover, this study contributes to the theoretical construction of how game-based learning can be designed to facilitate mindful learning experience, flow experience, self-efficacy, and mastery experience during creativity. Some additional enhancement mechanisms utilized in the program were: rewards for high-quality performance, challenging tasks, a variety of design components, immediate feedback, and idea sharing. The theoretical design of this study provides support for the ongoing scientific investigation of new applications of mindful learning in educational programs concerning the learning of creativity.

SELECTION OF CITATIONS
SEARCH DETAIL
...