Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 7(1): 14632, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29116157

ABSTRACT

The integration of III-V semiconductors on silicon (Si) substrate has been an active field of research for more than 30 years. Various approaches have been investigated, including growth of buffer layers to accommodate the lattice mismatch between the Si substrate and the III-V layer, Si- or Ge-on-insulator, epitaxial transfer methods, epitaxial lateral overgrowth, aspect-ratio-trapping techniques, and interfacial misfit array formation. However, manufacturing standards have not been met and significant levels of remaining defectivity, high cost, and complex integration schemes have hampered large scale commercial impact. Here we report on low cost, relaxed, atomically smooth, and surface undulation free lattice mismatched III-V epitaxial films grown in wide-fields of micrometer size on 300 mm Si(100) and (111) substrates. The crystallographic quality of the epitaxial film beyond a few atomic layers from the Si substrate is accomplished by formation of an interfacial misfit array. This development may enable future platforms of integrated low-power logic, power amplifiers, voltage controllers, and optoelectronics components.

3.
Proc Natl Acad Sci U S A ; 111(1): 63-8, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24351933

ABSTRACT

Several superconducting transition temperatures in the range of 30-46 K were reported in the recently discovered intercalated FeSe system (A1-xFe2-ySe2, A = K, Rb, Cs, Tl). Although the superconducting phases were not yet conclusively decided, more than one magnetic phase with particular orders of iron vacancy and/or potassium vacancy were identified, and some were argued to be the parent phase. Here we show the discovery of the presence and ordering of iron vacancy in nonintercalated FeSe (PbO-type tetragonal ß-Fe1-xSe). Three types of iron-vacancy order were found through analytical electron microscopy, and one was identified to be nonsuperconducting and magnetic at low temperature. This discovery suggests that the rich-phases found in A1-xFe2-ySe2 are not exclusive in Fe-Se and related superconductors. In addition, the magnetic ß-Fe1-xSe phases with particular iron-vacancy orders are more likely to be the parent phase of the FeSe superconducting system instead of the previously assigned ß-Fe1+δTe.

4.
Proc Natl Acad Sci U S A ; 105(38): 14262-4, 2008 Sep 23.
Article in English | MEDLINE | ID: mdl-18776050

ABSTRACT

The recent discovery of superconductivity with relatively high transition temperature (Tc) in the layered iron-based quaternary oxypnictides La[O(1-x)F(x)] FeAs by Kamihara et al. [Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05-0.12) with Tc = 26 K. J Am Chem Soc 130:3296-3297.] was a real surprise and has generated tremendous interest. Although superconductivity exists in alloy that contains the element Fe, LaOMPn (with M = Fe, Ni; and Pn = P and As) is the first system where Fe plays the key role to the occurrence of superconductivity. LaOMPn has a layered crystal structure with an Fe-based plane. It is quite natural to search whether there exists other Fe based planar compounds that exhibit superconductivity. Here, we report the observation of superconductivity with zero-resistance transition temperature at 8 K in the PbO-type alpha-FeSe compound. A key observation is that the clean superconducting phase exists only in those samples prepared with intentional Se deficiency. FeSe, compared with LaOFeAs, is less toxic and much easier to handle. What is truly striking is that this compound has the same, perhaps simpler, planar crystal sublattice as the layered oxypnictides. Therefore, this result provides an opportunity to better understand the underlying mechanism of superconductivity in this class of unconventional superconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...