Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 801: 149527, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34416606

ABSTRACT

Urban trees ameliorate heat stress for urban dwellers. However, it is difficult to quantitatively assess the integrated impacts of tree planting and street layouts on visual and thermal comfort in simulations and urban field experiments. We conducted scaled outdoor experiments in Guangzhou to investigate the influence of tree plantings on pedestrian visual and thermal comfort in street canyons with various aspect ratios (H/W = 1, 2, 3; H = 1.2 m). We considered the effects of tree crown covers (big and small crown) and tree planting densities (ρ = 1, 0.5) on pedestrian illuminance level and two thermal comfort indices (Physiological Equivalent Temperature: PET and Index of Thermal Stress: ITS). When ρ = 1, trees in most cases reduce pedestrian illuminance (maximum 140.0klux) and improve visual comfort. Decreasing ρ from 1 to 0.5 increases the illuminance (maximum 179.5klux) in the streets with big crown trees (H/W = 1, 2) and in the street with small crown trees (H/W = 2). When ρ = 1 (H/W = 1, 2), big crown trees decrease the peak daytime PET (by about 4.0 °C) and ITS (by about 285 W). Small crown trees (ρ = 1, H/W = 1, 2) produce a warming effect on peak daytime PET (2.0-3.0 °C), but a reduction in ITS is observed when H/W = 2, 3. After reducing ρ from 1 to 0.5, big crown trees increase peak daytime thermal stress according to both indices when H/W = 1, 2. Small crown trees exhibit a similar PET cycle between ρ = 0.5 and ρ = 1 across various H/W, but their daytime reduction of ITS is less effective when ρ = 0.5 (H/W = 2). The discrepancies between PET and ITS are attributed to their different approaches to modelling radiation fluxes. The narrower the street, the lower the illuminance, PET, and ITS, while their increases caused by reduced ρ are limited in narrow streets. Our study informs some potential urban tree planting strategies and produces high-quality validation data for numerical simulations and theoretical models.


Subject(s)
Pedestrians , Trees , Cities , Heat-Shock Response , Humans , Models, Theoretical , Temperature
2.
Sci Total Environ ; 760: 144141, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33341630

ABSTRACT

Thermal history can influence human thermal comfort through physiological (short-term) and psychological (long-term) aspects. However, the nature of the interaction between long-term and short-term thermal history is unclear. To investigate the interactive effects of long-term and short-term thermal history on outdoor thermal comfort, we conducted summer thermal comfort surveys in Melbourne (n = 3293, January-February 2014), Guangzhou, and Zhuhai (n = 4304, September 2018). The mean thermal sensation of residents of Guangzhou was higher than that of Melbourne and Zhuhai residents under a similar Universal Thermal Climate Index (UTCI) range. The preferred UTCI was the highest for Melbourne residents (19.62 °C). When UTCI was 25.6-38.4 °C, respondents' mean thermal sensation from Köppen climate zones A, B, and C was significantly higher in Guangzhou than those of Zhuhai and Melbourne. A three-way ANOVA test revealed that peoples' thermal sensations depended on a significant interaction among UTCI thermal stress levels, climate zones, and prior exposure environment. The prior exposure environment could affect the difference in thermal perception between climate zones. However, there was no significant interaction between climate zones and activity engaged in before taking the survey on thermal sensation. The difference in the thermal perception of various climate zones diminished under universally uncomfortable conditions for specific prior exposure environments and activities. The socio-ecological system model, environmental perception theory, climatocultural adaptation, and alliesthesia are useful for understanding the interactive effect of long- and short-term thermal history on outdoor thermal comfort. By revealing how people adapt to different climatic environments, our results can help ensure that people with diverse climatic backgrounds can experience thermal comfort outdoors.


Subject(s)
Acclimatization , Thermosensing , Ecosystem , Humans , Seasons , Surveys and Questionnaires
3.
Environ Pollut ; 270: 116074, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33221086

ABSTRACT

The main of this work investigated the levels, emission sources, and associated health risks of ambient volatile organic compounds (VOCs) closed urban traffic trunk from June 2017 to November 2018. The seasonal variation trend for total VOCs (TVOCs) concentrations was autumn > winter > summer > spring. During the daily fluctuations in summer, the TVOC concentrations appeared to be the highest at midnight and the lowest at 14:00. In spring, autumn, and winter, the concentrations of TVOCs reached the highest levels at 06:00 and dropped to the lowest levels at 14:00 to 15:00; then, the levels increased after 20:00. Aromatics were the most important types of ambient VOCs for the formation of secondary organic aerosols (SOAs). The Positive Matrix Factorization (PMF) source analysis indicated that the traffic emission accounted for 28.9% of TVOCs, followed by combustion (24.7%), industrial (21.3%), gasoline volatilization (12.4%), and solvent (11.7%) sources. Carcinogenic and non-carcinogenic risks via inhalation exposure to the selected 10 toxic VOCs may be of more concern for residents nearby traffic trunk in Harbin in autumn.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
4.
Sci Total Environ ; 764: 142920, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33172638

ABSTRACT

Urban tree planting has the potential to reduce urban heat island intensity and building energy consumption. However, the heterogeneity of cities makes it difficult to quantitatively assess the integrated impacts of tree planting and street layouts. Scaled outdoor experiments were conducted to investigate the influence of tree plantings on wind and thermal environments in two-dimensional (2D) north-south oriented street canyons with various aspect ratios (building height/street width, AR = H/W = 1, 2, 3; H = 1.2 m). The effects of tree species with similar leaf area index (C. kotoense, big crown; C. macrocarpa, small crown), tree planting densities (ρ = 1, 0.5), and arrangements (double-row, single-row) were considered. Vegetation reduces pedestrian-level wind speed by 29%-70%. For ρ = 1 and single-row arrangement, C. kotoense (big crown) has a better shading effect and decreases wall and air temperature during the daytime by up to 9.4 °C and 1.2 °C, respectively. In contrast, C. macrocarpa (small crown) leads to a temperature increase at the pedestrian level. Moreover, C. kotoense raises the air and wall temperature of the upper urban canopy layer and increases the street albedo during the daytime because of the solar radiation reflected by trees. C. kotoense/C. macrocarpa produces the maximum daytime cooling/warming and nighttime warming of air temperature when H/W = 2 owing to its weaker convective heat transfer. When H/W = 3, the building shade dominates the shading cooling and tree cooling is less significant. When ρ = 1, double-row trees (C. kotoense) reduce wall and air temperatures by up to 10.0 °C and 1.0 °C during the daytime. However, reducing ρ from 1 to 0.5 weakens the capacity of daytime cooling by C. kotoense and the warming effect by C. macrocarpa. Our study quantifies the influence of tree planting and aspect ratios on the thermal environment, which can provide meaningful references for urban tree planting and produce high-quality validation data for numerical modeling.


Subject(s)
Hot Temperature , Trees , Cities , Temperature , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...