Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 24(2): 1748-1756, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27796983

ABSTRACT

Solidification and stabilization are well-known technologies used for treating hazardous waste. These technologies that use cementitious binder have been applied for decades as a final treatment procedure prior to the hazardous waste disposal. In the present work, hazardous waste like fly ash containing high concentrations of heavy metals such Zn (4715.56 mg/kg), Pb (1300.56 mg/kg), and Cu (534.72 mg/kg) and amounts of Ag, Cd, Co, Cr, Mn, and Ni was sampled from a city refuse incinerator facility. This fly ash was utilized in the solidification/stabilization of heavy metal sludge since fly ash has cement-like characteristics. Cement additives such as sodium sulfate, sodium carbonate, and ethylenediaminetetraacetic acid (EDTA) was incorporated to the solidified matrix in order to determine its effect on the solidification/stabilization performance. The solidified matrix was cured for 7, 14, 21, and 28 days prior for its physical and chemical characterizations. The results show that the solidified matrix containing 40% fly ash and 60% cement with heavy metal sludge was the formulation that has the highest fly ash content with a satisfactory strength. The solidified matrix was also able to immobilize the heavy metals both found in the fly ash and sludge based on the toxicity characteristic leaching procedure (TCLP) test. It also shows that the incorporation of sodium carbonate into the solidified matrix not only further improved the compressive strength from 0.36 MPa (without Na2CO3) to 0.54 MPa (with Na2CO3) but also increased its leaching resistance.


Subject(s)
Coal Ash/chemistry , Metals, Heavy/chemistry , Refuse Disposal/methods , Cities , Coal Ash/analysis , Compressive Strength , Construction Materials/analysis , Edetic Acid , Hazardous Waste/analysis , Incineration , Metals, Heavy/analysis , Sewage/analysis , Sewage/chemistry
2.
J Hazard Mater ; 300: 218-226, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26188864

ABSTRACT

Dimethyl sulfoxide (DMSO), one of the most widely used solvent, was subjected to fluidized-bed Fenton oxidation in this study. Fenton oxidation is considered one of the cheapest advanced oxidation processes due to high availability of Fenton's reagents Fe(2+) and H2O2, wherein, Fe(2+) catalyzes hydroxyl radical production from H2O2. Fluidized-bed Fenton process is a modified approach which is also used to address the production of large amount of iron oxide sludge in conventional Fenton process. Parametric study is included in this research using initial conditions of pH 2-7, 0.5-7.25 mM Fe(2+), 5-87.5mM H2O2, and 5-50mM DMSO. Fluidized-bed Fenton oxidation of 5mM DMSO using 68.97 g/L SiO2 carrier at initial conditions of pH 3, 5mM Fe(2+), and 32.5mM H2O2 resulted to 95.22% DMSO degradation, 34.38% TOC removal and 0.304 mM sulfate/mM DMSO0 production in 2h. The study shows that the intermediate product which was most difficult to oxidize and contributed most to the residual TOC was methanesulfonate.

SELECTION OF CITATIONS
SEARCH DETAIL
...