Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 38(20): 5274-80, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15543726

ABSTRACT

This study was set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from batch hot mix asphalt (HMA) plants and PAH removal efficiencies associated with their installed air pollution control devices. Field samplings were conducted on six randomly selected batch HMA plants. For each selected plant, stack flue gas samples were collected from both stacks of the batch mixer (n = 5) and the preheating boiler (n = 5), respectively. PAH samples were also collected from the field to assess PAHs that were directly emitted from the discharging chute (n = 3). To assess PAH removal efficiencies of the installed air pollution control devices, PAH contents in both cyclone fly ash (n=3) and bag filter fly ash (n = 3) were analyzed. Results show that the total PAH concentration (mean; RSD) in the stack flue gas of the batch mixer (354 microg/Nm3; 78.5%) was higher than that emitted from the discharging chute (107 microg/Nm3; 70.1%) and that in the stack flue gas of the preheating boiler (83.7 microg/Nm3; 77.6%). But the total BaPeq concentration of that emitted from the discharging chute (0.950 microg/Nm3; 84.4%) was higher than contained in the stack flue gas of the batch mixer (0.629 microg/Nm3; 86.8%) and the stack flue gas of the preheating boiler (= 0.112 microg/Nm3; 80.3%). The mean total PAH emission factor for all selected batch mix plants (= 139 mg/ton x product) was much higher than that reported by U.S. EPA for the drum mix asphalt plant (range = 11.8-79.0 mg/ton x product). We found the overall removal efficiency of the installed air pollution control devices (i.e., cyclone + bag filter) on total PAHs and total BaPeq were 22.1% and 93.7%, respectively. This implies that the installed air pollution control devices, although they have a very limited effect on the removal of total PAHs, do significantly reduce the carcinogenic potencies associated with PAH emissions from batch HMA plants.


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Hydrocarbons , Industrial Waste , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollution/statistics & numerical data , Carbon/analysis , Coal Ash , Environmental Monitoring/statistics & numerical data , Industrial Waste/statistics & numerical data , Particulate Matter , Taiwan
2.
J Air Waste Manag Assoc ; 53(9): 1149-57, 2003 Sep.
Article in English | MEDLINE | ID: mdl-13678371

ABSTRACT

In this study, polycyclic aromatic hydrocarbon (PAH) emissions from two batch-type medical waste incinerators (MWIs), one with a mechanical grate and the other with a fixed grate, both operated by a medical center, were assessed. Both MWIs shared the same air-pollution control devices (APCDs), with an electrostatic precipitator and a wet scrubber installed in series. Results show that when APCDs were used, total PAHs and total benzo[a]pyrene equivalent (total BaP(eq)) emission concentrations of both MWIs were reduced from 2220 to 1870 microg/m3 and 50 to 12.4 microg/m3, respectively. We used the Industrial Source Complex Short Term model (ISCST) to estimate the ground-level concentrations of the residential area and the traffic intersection located at the downwind side of the two MWIs. For the traffic intersection, we found both total PAHs and total BaP(eq) transported from MWIs to both studied areas were not significant. For the residential area, similar results were found when APCDs were used in MWIs. When APCDs were not included, we found that total PAHs transported from MWIs accounted for < 12%, but total BaP(eq) accounted for > 90%, of the on-site measured concentrations. These results suggest that the use of proper APCDs during incineration would significantly reduce the carcinogenic potencies associated with PAH emissions from MWIs to the residential area.


Subject(s)
Air Pollutants/analysis , Medical Waste Disposal , Models, Theoretical , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollution/prevention & control , Cities , Forecasting , Incineration , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...