Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 40(11): 2148-56, 2015 Jun.
Article in Chinese | MEDLINE | ID: mdl-26552172

ABSTRACT

The chemical constituents from lipophilic parts in the roots of Angelica dahurica var. formosana cv. Chuanbaizhi were studied in this paper. The compounds were separated and purified by repeated column chromatographic methods on silica gel and HPLC, and the chemical structures of compounds were determined by spectral data analyses. Twenty-nine compounds were obtained and identified as isoimperatorin (1), ß-sitosterol (2), imperatorin (3), bergapten (4), osthenol (5), xanthotoxin (6), isoimpinellin (7), dehydrogeijerin (8), phellopterin (9), isodemethylfuropinarine (10), 7-demethylsuberosin (11), alloimperatorin (12), xanthotoxol (13), isooxypeucedanin (14), alloisoimperatorin (15), demethylfuropinarine (16), 5-hydroxy-8-methoxypsoralen (17), oxypeucedanin methanolate (18), pabulenol (19), byakangelicin (20), marmesin (21), (+) -decursinol (22), heraclenol (23), oxypeucedanin hydrate (24), marmesinin (25), ulopterol (26), erythro-guaiacylglycerol-ß-ferulic acid ether (27), threo-guaiacylglycerol-ß-ferulic acid ether (28), and uracil (29). Compounds 5, 8, 11, 18, 21-23, and 26-28 were obtained from the roots of title plant for the first time.


Subject(s)
Angelica/chemistry , Phytochemicals/analysis , Coumarins/chemistry , Coumarins/isolation & purification , Furocoumarins/chemistry , Furocoumarins/isolation & purification , Methoxsalen/chemistry , Methoxsalen/isolation & purification , Phytochemicals/chemistry , Plant Roots/chemistry
2.
Fitoterapia ; 93: 88-97, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24382450

ABSTRACT

The aim of the present research was to establish a comprehensive strategy to identify the metabolites of isoimperatorin after biotransformation with rat liver microsomes in vitro, and further describe metabolic kinetic characteristics of isoimperatorin and its main metabolites. Utilizing liquid chromatography with time of flight mass spectrometry (LC-TOF-MS), 18 metabolites (M 1-18) were characterized according to the typical fragment ions and literature data. Among them, M-2, 3, 5, 9, 10, and 15 were new compounds. To further verify structures of the metabolites, five main metabolites were obtained from the magnifying biotransformation incubation system, and their chemical structures were elucidated as 8-hydroxyoxypeucedanin (M-3), hydroxypeucedanin hydrate (M-4), E-5-(4-hydroxy-3-methyl-2-alkenyloxy)-psoralen (M-11), Z-5-(4-hydroxy-3-methyl-2-alkenyloxy)-psoralen (M-12), and oxypeucedanin (M-16) by various spectroscopy methods including IR, MS and NMR. A simple new liquid chromatography with triple quadrupole tandem mass spectrometry (LC-QqQ-MS) method was developed for the simultaneous determination of isoimperatorin and its main metabolites. The analysis was performed on a Diamonsil™ ODS C18 column with acetonitrile-water containing 0.1% formic acid as mobile phase. Total run time was 20.0 min. The results suggested that the method we exhibited was successfully applied for analysis of isoimperatorin and its metabolites. The study provides essential data for proposing metabolite pathway and further pharmacological study of isoimperatorin.


Subject(s)
Furocoumarins/metabolism , Angelica/chemistry , Animals , Biotransformation , Chromatography, Liquid , Furocoumarins/isolation & purification , Furocoumarins/pharmacokinetics , Male , Mass Spectrometry , Microsomes, Liver/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacokinetics , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...