Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(29): e202304065, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38487973

ABSTRACT

Recent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e-) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of H2O2. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e- ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial. Therefore, a critical overview on OFGs in carbon-based electrocatalysts toward the 2e- ORR is highly desirable. Herein, we go over the methods for constructing OFGs in carbon including chemical oxidation, electrochemical oxidation, and precursor inheritance. Then we review the roles of OFGs in activating carbon toward the 2e- ORR, focusing on the intrinsic activity of different OFGs and the interplay between OFGs and metal species or defects. At last, we discuss the reasons for inconsistencies among different studies, and personal perspectives on the future development in this field are provided. The results provide insights into the origin of high catalytic activity and selectivity of carbon-based electrocatalysts toward the 2e- ORR and would provide theoretical foundations for the future development in this field.

2.
Environ Pollut ; 345: 123499, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38350535

ABSTRACT

Rare earth elements (REEs) are widely utilized in industries. However, The specific exposure features of REEs and potential biomarkers of exposure in occupational populations remain unclear. In this study, we evaluated the external and internal REEs exposure levels among the participants working in the ionic rare earth smelting plant. For the external exposure, the concentrations of 14 REEs and total rare earth elements (ΣREEs) in airborne particles were significantly elevated in the REEs-exposed versus non-exposed group (P < 0.05). Meanwhile, the levels of Yttrium (Y), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Thulium (Tm), Ytterbium (Yb), and ΣREEs in urine were higher in the REEs-exposed group compared to the non-exposed group (P < 0.05). Notably, a significant positive correlation was observed between Y in both the airborne particles and urine samples as well as Gd, and the Spearman correlation coefficient was 0.53 and 0.39 respectively, both P < 0.05. Conversely, no statistically significant differences were found in the levels of 15 REEs or ΣREEs in the blood samples between the REEs-exposed group and non-exposed group. Moreover, the concentrations of ΣREEs and 9 REEs in nail samples of the exposed group were significantly higher than those of the non-exposed group (P < 0.05), and the composition ratios of REEs in the nail samples closely resembled those found in individual airborne particles. Therefore, nail and urine samples were proposed to reflect long-term and short-term exposure to ionic rare earth respectively. Exposure biomarkers confirmed by external and internal exposure characteristics accurately provide the situation of human exposure to REEs environment, and have profound significance for monitoring and evaluating the level of REEs pollution in human body. It also provides a vital basis to find out the effect biomarkers, susceptible biomarkers and the health effects of rare earth environment for the future research.


Subject(s)
Metals, Rare Earth , Humans , Yttrium , Dysprosium , Biomarkers
3.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1208-1214, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37706774

ABSTRACT

Optical microresonators confine light to small volumes through resonant circulation. Herein, whispering gallery mode (WGM) microresonators have high Q factors among these microresonators, which have significant research value in the fields of fundamental physics research and optoelectronic devices. However, maintaining a very high surface finish on the side of the microresonator is necessary, as is keeping a coupling distance of tens of nanometers between the microresonator and the coupling waveguide. Thus, this makes the fabrication, coupling, and packaging of the microresonator very difficult and seriously hinders the practical application of the microresonator. In this study, the concept of gradient refractive index (GRIN) microresonator is proposed, and the radial GRIN is introduced to change the light direction and form a closed optical path within the microresonator. Herein, the mode field position of the GRIN microresonator is derived from the light transmission equation, and the theoretical result is proved by finite difference time domain (FDTD) simulation. Hence, there are several advantages to using this novel optical microresonator, including its high Q factor, strong coupling stability, and ease of integration.

4.
Sci Total Environ ; 896: 165335, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37414167

ABSTRACT

Under the environmental sustainability concept, landfill leachate concentrate can be up-cycled as a useful resource. Practical strategy for effective management of landfill leachate concentrate is to recover the existing humate as fertilizer purpose for plant growth. Herein, we designed an electro-neutral nanofiltration membrane to separate the humate and inorganic salts for achieving a sufficient humate recovery from leachate concentrate. The electro-neutral nanofiltration membrane yielded a high retention of humate (96.54 %) with an extremely low salt rejection (3.47 %), tremendously outperforming the state-of-the-art nanofiltration membranes and exhibiting superior promise in fractionation of humate and inorganic salts. With implementation of the pressure-driven concentration process, the electro-neutral nanofiltration membrane enriched the humate from 1756 to 51,466 mg∙L-1 at a fold of 32.6, enabling 90.0 % humate recovery and 96.4 % desalination efficiency from landfill leachate concentrate. Furthermore, the recovered humate not only exerted no phytotoxicity, but also significantly promoted the metabolism of red bean plants, serving as an effective green fertilizer. The study provides a conceptual and technical platform using high-performance electro-neutral nanofiltration membranes to extract the humate as a promising nutrient for fertilizer application, in view of sustainable landfill leachate concentrate treatment.

5.
Appl Opt ; 62(5): 1428-1435, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36821248

ABSTRACT

The hyperspectral full polarization imaging system (HFPIS) based on spatial modulation and liquid crystal tunable filter (LCTF) can modulate the polarization information of the target into the interferogram by means of interference imaging. It has the advantage of rapid imaging of the hyperspectral full polarization information from the target, and has good real time imaging and practicality. Through the spectroscopic imaging mode of a Savart prism, the corresponding interference optical path and imaging system are designed, including a beam expander, spatial modulator, LCTF, focusing system, and imaging sensor. This system can extract the different information from the target and demodulate it so as to obtain the hyperspectral polarization image. The experiment shows that the HFPIS can reveal the texture, contour, and other details of the target in the fog, and has obvious advantages over the traditional intensity imaging methods.

6.
Micromachines (Basel) ; 14(1)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36677289

ABSTRACT

In this paper, we introduce a low-cost, expansible, and compatible measurement and control system for atomic force microscopes (AFM) based on a quartz tuning fork (QTF) self-sensing probe and frequency modulation, which is mainly composed of an embedded control system and a probe system. The embedded control system is based on a dual-core OMAPL138 microprocessor (DSP + ARM) equipped with 16 channels of a 16-bit high-precision general analog-to-digital converter (ADC) and a 16-bit high-precision general digital-to-analog converter (DAC), six channels of an analog-to-digital converter with a second-order anti-aliasing filter, four channels of a direct digital frequency synthesizer (DDS), a digital input and output (DIO) interface, and other peripherals. The uniqueness of the system hardware lies in the design of a high-precision and low-noise digital-analog hybrid lock-in amplifier (LIA), which is used to detect and track the frequency and phase of the QTF probe response signal. In terms of the system software, a software difference frequency detection method based on a digital signal processor (DSP) is implemented to detect the frequency change caused by the force gradient between the tip and the sample, and the relative error of frequency measurement is less than 3%. For the probe system, a self-sensing probe controller, including an automatic gain control (AGC) self-excitation circuit, is designed for a homemade balanced QTF self-sensing probe with a high quality factor (Q value) in an atmospheric environment. We measured the quality factor (Q value) of the balanced QTF self-sensing probes with different lengths of tungsten tips and successfully realized AFM topography imaging with a tungsten-tip QTF probe 3 mm in length. The results show that the QTF-based self-sensing probe and the developed AFM measurement and control system can obtain high quality surface topography scanning images in an atmospheric environment.

7.
Chemosphere ; 309(Pt 1): 136553, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36155019

ABSTRACT

Zinc (Zn) is necessary for the survival of aquatic organisms; nevertheless, the accumulation of Zn in excessive amounts may have toxic consequences. Few studies focusing on the biochemical, morphological, and transcriptional effects of aqueous Zn in Litopenaeus vannamei have been reported, and the underlying toxic mechanism remains largely unknown. The present study was performed to investigate the growth performance, morphological alterations, physiological changes, and transcriptional responses after Zn exposure at 0 (control), 0.01, 0.1, and 1 mg/L concentrations for 30 days in white shrimp L. vannamei hepatopancreas. The results found that survival rate (SR) and growth performance were significantly reduced in 1 mg/L Zn group. Significant structural damage and significant Zn accumulation in hepatopancreas were observed. The activities of trypsin and amylase (AMS), and the total antioxidant capacity (T-AOC) were attenuated, while the production of reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly increased after Zn exposure. Many differentially expressed genes (DEGs) were obtained after Zn exposure, and the majority of these DEGs were downregulated. Ten DEGs involved in oxidative stress, immunological response, apoptosis, and other processes were selected for qRT-PCR validation and the expression profiles of these DEGs kept well consistent with the transcriptome data, which confirmed the accuracy and reliability of the transcriptome results. Subsequently, we screened 12 genes to examine the changes of expression in different concentrations in more detail. All the results implying that Zn exposure caused severe histopathological changes and increased Zn accumulation in hepatopancreas, altered immune, antioxidant and detoxifying response by regulating the gene expressions of related genes, and eventually might trigger apoptosis. These findings provide valuable information and a new perspective on the molecular toxicity of crustaceans in response to environmental heavy metal exposure.


Subject(s)
Hepatopancreas , Penaeidae , Animals , Hepatopancreas/metabolism , Zinc/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Trypsin/metabolism , Reproducibility of Results , Penaeidae/genetics , Malondialdehyde/metabolism , Amylases/metabolism
8.
Article in English | MEDLINE | ID: mdl-35247531

ABSTRACT

Copper pyrithione (CuPT) is used globally to prevent biofouling. However, it poses certain risks to aquatic ecosystems. To understand the effects of CuPT on Litopenaeus vannamei after exposure to different concentrations of CuPT (0, 64, and 128 µg/L), the apoptotic cell ratio, production of reactive oxygen species (ROS), and gene expression in the hemocytes were studied at 0, 3, 12, 24, and 48 h. The results revealed that ROS production was induced significantly at 3-48 h only in the 128 µg/L groups. The apoptotic cell ratio was increased significantly at 12 and 24 h in the 64 µg/L groups, and at 3-48 h in the 128 µg/L groups. Meanwhile, CuPT exposure changed gene expression in hemocytes at different levels. In the 64 µg/L groups, the expression of Mn-superoxide dismutase (MnSOD) was induced at 12 h, glutathione peroxidase (GPx) was induced at 24 and 48 h, caspase-3 induced at 24 h, metallothionein (MT) and HSP70 were increased at 3 h. In the 128 µg/L groups, MnSOD was increased at 3 h and then decreased at 12-48 h, GPx was up-regulated at 3, 24 h and then decreased at 48 h, caspase-3 was increased at 24 h, MT was increased at 3-48 h, HSP60 and HSP70 were up-regulated at 3-12 h. These results indicated that CuPT induced ROS production and the expression of caspase-3 in hemocytes, then caused hemocyte apoptosis. Expression levels of MnSOD, GPx, MT, HSP60, and HSP70 were up-regulated to protect the hemocyte against CuPT stress.


Subject(s)
Hemocytes , Penaeidae , Animals , Apoptosis/genetics , Caspase 3/metabolism , Ecosystem , Gene Expression , Glutathione Peroxidase/metabolism , HSP70 Heat-Shock Proteins/metabolism , Metallothionein/metabolism , Organometallic Compounds , Pyridines , Reactive Oxygen Species/metabolism
9.
Front Nutr ; 9: 745624, 2022.
Article in English | MEDLINE | ID: mdl-35165654

ABSTRACT

Ganoderma resinaceum is a valuable Chinese medicine. This study aimed to investigate whether a G. resinaceum alcohol extract (GRAE) improves sleep, and analyze the potential mechanism. After 30 days of continuous administration of GRAE at various doses, GRAE (1,000 mg/kg.bw) prolonged pentobarbital sodium-induced sleep, increased the rate of sleeping in mice treated with a subthreshold dose of pentobarbital sodium, and shortened sleep latency. The mice brain was analyzed using UPLC-MS/MS and RNA-sequencing. Metabolomics analysis revealed that 73 metabolites in the high-dose (HD) group had changed significantly, mainly in amino acids and their derivatives, especially the accumulation of L-glutamine and PGJ2 (11-oxo-15S-hydroxy-prosta-5Z, 9, 13E-trien-1-oic acid). Transcriptome analysis revealed 500 differential genes between HD and control groups, mainly enriched in neuroactive ligand-receptor interaction, amphetamine addiction, and cocaine addiction pathways. The conjoint analysis of the transcriptome and metabolome showed that the biosynthesis of L-glutamine might be regulated by Homer1, Homer3, and Grin3b. This suggests that GRAE may affect L-glutamine accumulation by regulating the expression of these genes. This study showed that GRAE may prolong the sleep time of mice by reducing the accumulation of L-glutamine and deepens our understanding of the regulatory network between certain genes and L-glutamine.

10.
Foods ; 11(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-37431027

ABSTRACT

The purpose of this research work is to perform detailed exergetic, energetic and techno-economic analysis of the black tea drying process in the gas-type industrial dryer. Exergy-energy and techno-economic methodology was applied to investigate the heat loss, exergetic and energetic performance, exergy efficiency, improvement potential rate, sustainability index and techno-economic performance of a drying system. The results showed that the heat loss of exhaust air in the late drying process played a main contributing role in the heat loss and exergy loss of the whole drying system. Therefore, the exergy efficiency of the initial drying period and the redrying period varied from 38.08% to 65.09% and 24.76% to 26.97%, respectively. In addition, the improvement potential rate and sustainability index of the whole system varied from 6.93 kW to 12.94 kW and 1.33 to 2.86, respectively. The improvement potential obtained in the present work indicated that the drying operation is greatly in need of exergy performance improvement. Finally, the net present value and payback period obtained from techno-economic analysis were 179,442.03 USD and 5.3 years, the result is useful for investors or contractors to refer to and make investment decisions.

11.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209553

ABSTRACT

Maize (Zea mays L.) is the most essential food crop in the world. However, maize is highly susceptible to drought stress, especially at the seedling stage, and the molecular mechanisms underlying drought tolerance remain elusive. In this study, we conducted comparative transcriptome and physiological analyses of drought-tolerant (CML69) and susceptible (LX9801) inbred lines subjected to drought treatment at the seedling stage for three and five days. The tolerant line had significantly higher relative water content in the leaves, as well as lower electrolyte leakage and malondialdehyde levels, than the susceptible line. Using an RNA-seq-based approach, we identified 10,084 differentially expressed genes (DEGs) with 6906 and 3178 DEGs been annotated and unannotated, respectively. Two critical sets of drought-responsive DEGs, including 4687 genotype-specific and 2219 common drought-responsive genes, were mined out of the annotated DEGs. The tolerant-line DEGs were predominantly associated with the cytoskeleton, cell wall modification, glycolysis/gluconeogenesis, transport, osmotic regulation, drought avoidance, ROS scavengers, defense, and transcriptional factors. For the susceptible line, the DEGs were highly enriched in the photosynthesis, histone, and carbon fixation pathways. The unannotated DEGs were implicated in lncRNAs, including 428 previously reported and 22% putative TE-lncRNAs. There was consensus on both the physiological response and RNA-seq outcomes. Collectively, our findings will provide a comprehensive basis of the molecular networks mediating drought stress tolerance of maize at the seedling stage.


Subject(s)
Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Leaves/genetics , Stress, Physiological , Transcriptome , Zea mays/genetics , Acclimatization , Computational Biology/methods , Gene Ontology , High-Throughput Nucleotide Sequencing , Models, Biological , Phenotype , Seedlings/genetics , Seedlings/growth & development , Sequence Analysis, RNA
12.
Bull Environ Contam Toxicol ; 106(3): 501-506, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33559033

ABSTRACT

We investigated cadmium (Cd) accumulation in muscles, gills and hepatopancreas of Litopenaeus vannamei following 48 h exposure to 5.25 mg/L, and depuration of Cd in these tissues on 1, 5 and 15 d post exposure. We also detected the expressions of metallothionein (MT), caspase-3 and p53 in hepatopancreas of shrimp exposed to 0, 5.25 and 10.5 mg/L Cd (the 24 h median lethal concentration, 24 h LC50) at 0, 3, 12, 24 and 48 h. Cd accumulated with high concentration in hepatopancreas, and low concentration in muscles. Cd depurated fast in hepatopancreas and gills. MT expression increased in a time-dependent manner after Cd exposure. The p53 and caspase-3 increased at 12 and 24 h in 10.5 mg/L group. In conclusion, the accumulation and depuration of Cd in three tissues were tissues-specific. The changes of the expressions of MT, p53 and caspase-3, were stress response of L. vannamei under Cd exposure.


Subject(s)
Metallothionein , Penaeidae , Animals , Cadmium/toxicity , Gills , Hepatopancreas , Metallothionein/genetics , Penaeidae/genetics
13.
Chemosphere ; 263: 128270, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297214

ABSTRACT

Crustaceans are particularly sensitive to heavy metal pollution. Copper (Cu) is one of typical heavy metal pollutants in aquatic ecosystems. However, limited attention has been paid on the proteomic responses of shrimp under Cu stress. White shrimp Litopenaeus vannamei held in 5‰ seawater were exposed to 5 mg L-1 Cu for 3 h, and the regulatory mechanism in the gills was elucidated using iTRAQ-based quantitative proteomics. The results showed that a total of 5034 proteins were identified, 385 differentially expressed proteins (DEPs), including 147 differentially up-regulated proteins (DUPs) and 238 differentially down-regulated proteins (DDPs) were found. Bioinformatics analysis indicated the DEPs responding to Cu stress mainly involved in cytoskeleton, immune response, stress response, protein synthesis, detoxification, ion homeostasis and apoptosis. Furthermore, we still performed PRM analysis on sarcoplasmic calcium binding protein (SCP), serine proteinase inhibitor B3 (SPIB3), C-type lectin 4 (CTL4), cathepsin L (CATHL), JHE-like carboxylesterase 1 (CXE1) and paramyosin (PMY), and biochemical analysis on Cu/Zn-superoxide dismutase (Cu/Zn-SOD) to validate the iTRAQ results, respectively. The present proteome analysis revealed that Cu stress disrupted the ion homeostasis and protein synthesis, and L.vannamei mainly regulates a series of molecular pathways which contained many key proteins involved in the immune process to protect the organism from Cu stress. Our data provides more insight about the underlying mechanisms that related to the stress response of Cu exposure in crustacean.


Subject(s)
Gills , Penaeidae , Animals , Copper/toxicity , Ecosystem , Penaeidae/genetics , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...