Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6440, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499631

ABSTRACT

This study aimed at exploring the effects of γ-polyglutamic acid on the growth of desert alfalfa and the soil microorganisms in the rhizosphere. The study examined the effects of varying concentrations of γ-polyglutamic acid (0%-CK, 2%-G1, 4%-G2, 6%-G3) on sandy soil, the research investigated its impact on the growth characteristics of alfalfa, nutrient content in the rhizosphere soil, and the composition of bacterial communities. The results indicated that there were no significant differences in soil organic matter, total nitrogen, total phosphorus, total potassium, and available phosphorus content among the G1, G2, and G3 treatments. Compared to CK, the soil nutrient content in the G2 treatment increased by 14.81-186.67%, showing the highest enhancement. In terms of alfalfa growth, the G2 treatment demonstrated the best performance, significantly increasing plant height, chlorophyll content, above-ground biomass, and underground biomass by 54.91-154.84%. Compared to the CK treatment, the number of OTUs (operational taxonomic units) in the G1, G2, and G3 treatments increased by 14.54%, 8.27%, and 6.84%, respectively. The application of γ-polyglutamic acid altered the composition and structure of the bacterial community, with Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota accounting for 84.14-87.89% of the total bacterial community. The G2 treatment significantly enhanced the diversity and evenness of soil bacteria in the rhizosphere. Redundancy analysis revealed that organic matter, total nitrogen, total potassium, moisture content, and pH were the primary factors influencing the structure of bacterial phyla. At the genus level, moisture content emerged as the most influential factor on the bacterial community. Notably, moisture content exhibited a strong positive correlation with Acidobacteriota, which in turn was positively associated with indicators of alfalfa growth. In summary, the application of γ-polyglutamic acid at a 4% ratio has the potential for improving sandy soil quality, promoting plant growth, and regulating the rhizosphere microbial community.


Subject(s)
Sand , Soil , Soil/chemistry , Medicago sativa , Rhizosphere , Polyglutamic Acid , Soil Microbiology , Bacteria , Acidobacteria , Nitrogen/analysis , Phosphorus/analysis , Potassium/analysis , Dietary Supplements/analysis
2.
PLoS One ; 19(1): e0296269, 2024.
Article in English | MEDLINE | ID: mdl-38181015

ABSTRACT

Phytochrome-interacting factors (PIFs) are essential transcription factors for plant growth, development, and stress responses. Although PIF genes have been extensively studied in many plant species, they have not been thoroughly investigated in wheat. Here, we identified 18 PIF genes in cultivated hexaploid wheat (Triticum aestivum L). Phylogenetic analysis, exon-intron structures, and motif compositions revealed the presence of four distinct groups of TaPIFs. Genome-wide collinearity analysis of PIF genes revealed the evolutionary history of PIFs in wheat, Oryza sativa, and Brachypodium distachyon. Cis-regulatory element analysis suggested that TaPIF genes indicated participated in plant development and stress responses. Subcellular localization assays indicated that TaPIF2-1B and TaPIF4-5B were transcriptionally active. Both were found to be localized to the nucleus. Gene expression analyses demonstrated that TaPIFs were primarily expressed in the leaves and were induced by various biotic and abiotic stresses and phytohormone treatments. This study provides new insights into PIF-mediated stress responses and lays a strong foundation for future investigation of PIF genes in wheat.


Subject(s)
Phytochrome , Triticum , Triticum/genetics , Phylogeny , Biological Assay , Biological Evolution , Phytochrome/genetics
3.
Chem Pharm Bull (Tokyo) ; 71(12): 852-858, 2023.
Article in English | MEDLINE | ID: mdl-38044138

ABSTRACT

Porcine acellular dermal matrix (pADM) is known to accelerate wound healing. However, the underlying molecular mechanism remains unclear. This study aimed to investigate the effects of pADM on wound healing and its underlying mechanisms. HaCaT cells were treated with hydrogen peroxide (H2O2) or pADM, and the appropriate treatment concentration was determined using the cell counting kit-8 and flow cytometry. Cell migration was assessed using a Transwell assay and scratch test. Inflammation was evaluated using enzyme-linked immunosorbent assay. Western blotting was performed to measure the levels of protein kinase B (AKT) pathway-related proteins. The results showed that H2O2 inhibited cell viability and induced apoptosis in a dose-dependent manner. pADM promoted cell migration and decreased the levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) in H2O2-treated HaCaT cells. Moreover, pADM rescued the downregulation of phosphorylated (p)-AKT and p-mechanistic target of rapamycin (mTOR) induced by H2O2. LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, abrogated migration and anti-inflammatory response caused by pADM. In conclusion, pADM promotes cell migration and inhibits inflammation by activating the AKT pathway under oxidative stress. These findings support the use of pADM for post-traumatic therapy and reveal a novel underlying mechanism of action.


Subject(s)
Acellular Dermis , Animals , Swine , Acellular Dermis/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Keratinocytes/metabolism , Signal Transduction , Inflammation/drug therapy , Inflammation/metabolism
5.
PLoS One ; 18(11): e0293661, 2023.
Article in English | MEDLINE | ID: mdl-38011254

ABSTRACT

In order to investigate the impact of herbaceous root development on soil slope stability in expansive soil areas, the research was conducted in the soil slope experimental area of Yaoshi Town, Shangzhou District, Shangluo City. Three types of herbaceous plants, namely Lolium perenne, Medicago, and Cynodon dactylon, were planted to examine their influence on slope stability. The results indicated that Lolium perenne had significantly higher root length density and root surface area density compared to Cynodon dactylon and Medicago. However, the root weight density of Cynodon dactylon was found to be highest. The roots of Lolium perenne, Cynodon dactylon, and Medicago were predominantly observed in diameter ranges of 0 < L ≤ 1.0 mm, 0 < L ≤ 2.5 mm, and 2.5 < L ≤ 3.0 mm, respectively. The roots of herbaceous plants have the ability to enhance water retention in soil, resist hydraulic erosion of slope soil, and reduce soil shrinkage and swelling. During the initial phase of herbaceous planting, there is an accelerated process of organic carbon mineralization in the soil. The roots of herbaceous plants play a crucial role in soil consolidation and slope protection. They achieve this by dispersing large clastic particles, binding small particles together, altering soil porosity, enhancing soil water retention, and reducing soil water infiltration. It was found that Lolium perenne and Medicago, which have well-developed roots, exhibited superior slope protection effects. These findings contribute to the theoretical understanding for the implementation of green ecological protection technology on soil slopes.


Subject(s)
Lolium , Soil , Plant Roots/metabolism , Lolium/metabolism , Plants/metabolism , Cynodon/metabolism , Medicago , Water/metabolism
6.
Nanoscale Adv ; 5(20): 5661-5670, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37822904

ABSTRACT

Radioactive cesium (Cs) is a significant concern due to its role as a major byproduct of nuclear fission and its potential for radioactive contamination. Internal contamination with radioactive Cs is characterized by immoderate production of reactive oxygen species (ROS), resulting in severe radiation damage. Therefore, the development of therapeutic strategies should focus on enhancing the excretion of radioactive Cs and reducing radiation-induced oxidative damage. However, current therapeutic drugs like Prussian blue (PB) have limited efficacy in addressing these issues. In this study, we present Cu3[Fe(CN)6]2 (CuFe) nanoparticles, a Prussian blue analog (PBA), which can not only efficiently sequester Cs but also exhibit resistance against radiation damage. The results of the adsorption studies demonstrate that CuFe outperforms PB in terms of adsorption performance. Further mechanistic investigations indicate that the increased adsorption capacity of CuFe may be attributed to the presence of additional defects resulting from the [Fe(CN)6] missing linkers. Moreover, CuFe mimics the functions of catalase (CAT) and superoxide dismutase (SOD) by effectively eliminating O2˙- and H2O2 while scavenging ˙OH, thereby mitigating ROS induced by radiative Cs. Importantly, in vivo study confirms the efficient Cs decorporation capability of CuFe. The fecal cumulative excretion rate of CuFe reaches 69.5%, which is 1.45 times higher than that of PB (48.8%). These findings demonstrate that CuFe exhibits excellent Cs removal performance and ROS scavenging ability, making it an attractive candidate for the treatment of Cs contamination.

7.
Trends Cell Biol ; 33(8): 708-727, 2023 08.
Article in English | MEDLINE | ID: mdl-37137792

ABSTRACT

Previous studies have shown that mitochondria play core roles in not only cancer stem cell (CSC) metabolism but also the regulation of CSC stemness maintenance and differentiation, which are key regulators of cancer progression and therapeutic resistance. Therefore, an in-depth study of the regulatory mechanism of mitochondria in CSCs is expected to provide a new target for cancer therapy. This article mainly introduces the roles played by mitochondria and related mechanisms in CSC stemness maintenance, metabolic transformation, and chemoresistance. The discussion mainly focuses on the following aspects: mitochondrial morphological structure, subcellular localization, mitochondrial DNA, mitochondrial metabolism, and mitophagy. The manuscript also describes the recent clinical research progress on mitochondria-targeted drugs and discusses the basic principles of their targeted strategies. Indeed, an understanding of the application of mitochondria in the regulation of CSCs will promote the development of novel CSC-targeted strategies, thereby significantly improving the long-term survival rate of patients with cancer.


Subject(s)
Drug Resistance, Neoplasm , Mitochondria , Mitophagy , Neoplasms , Neoplastic Stem Cells , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/ultrastructure , DNA, Mitochondrial , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Humans
8.
PLoS One ; 18(4): e0283341, 2023.
Article in English | MEDLINE | ID: mdl-37027399

ABSTRACT

The soft rock in Mu Us Sandy Land has rich resources and high content of clay minerals. The combination of soft rock with sand can play a certain role in sand fixation and promote the green development of ecological environment. In this paper, the aeolian sandy soil in Mu Us Sandy was taken as the research object, and it was mixed with soft rock to form composite soil. The four volume ratios of soft rock to sand were respectively 0:1, 1:5, 1:2 and 1:1. And CK, P1, P2 and P3 were used to represent the above four volume ratios in turn. By means of quantitative fluorescent PCR and high throughput sequencing, 16S rRNA gene abundance and community structure were investigated. The results showed that the soil organic carbon (SOC) and total nitrogen (TN) contents in 0-30cm soil layer were higher. Compared with CK, the SOC of P2 was improved by 112.77% and that of P1 was 88.67%. The content of available phosphorus (AP) and available potassium (AK) was higher in 30-60cm soil layer, and P3 was more effective. The abundance of 16S rRNA gene in the mixed soil bacteria ranged from 0.03×109 to 0.21×109 copies g-1 dry soil, which was consistent with the changes of nutrients. Under different soil layers, the three dominant bacteria in the mixed soil were the same, namely Phylum Actinobacteriota, Phylum Proteobacteria and Phylum Chloroflexi, and there were more unique genera in each soil layer. Both bacteria ɑ and ß diversity showed that the community structure of P1 and P3 in 0-30cm soil layers was similar, and that of P1 and P2 in 30-60cm soil layers was similar. AK, SOC, AN (ammonium nitrogen), TN and NN (nitrate nitrogen) were the main factors contributing to the differentiation of microbial community structure under different compound ratios and soil layers, and Phylum Actinobacteria has the largest correlation with nutrients. The results showed that the soft rock could improve the quality of sandy soil, and that the growth of microbial growth was dependent on the soil physicochemical characteristics. The results of this study will be helpful to the study of the microscopical theory for the control of the wind-blown sand and the ecology of the desert.


Subject(s)
Sand , Soil , Soil/chemistry , Carbon/analysis , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Soil Microbiology , Nitrogen/analysis , China
9.
Article in English | MEDLINE | ID: mdl-36767136

ABSTRACT

This study investigates the environmental protection behavior of farmers in the Guanzhong Plain region and the factors influencing their participation, in order to improve the enthusiasm of farmers' participation and promote the formation of "good governance" in rural ecological environments. Based on interviews with 295 farmers, the influence of psychological cognitive factors on farmers' intention and behavior to participate in environmental protection was analyzed using partial least squares structural equation modeling under the extended theory of planned behavior, and the moderating effect of policy environment in the relationship between farmers' intention to participate and participation behavior was revealed. The research results show that: (1) The current situation of farmers' participation in environmental protection is generally characterized by "strong intentions and weak actions". (2) Participation consciousness and benefit perception have a greater impact on farmers' intention to participate in environmental protection, perceived behavioral control has a smaller impact, and subjective norms do not have a significant impact. (3) Perceived behavioral control and participation intention have a greater influence on farmers' participation in environmental protection behavior, subjective norms have less influence, and there is no direct influence of perceived benefits and participation awareness on farmers' participation behavior, i.e., farmers' participation intention has indirect influence on participation behavior. (4) The moderating effect of policy environment indicates that policy environment has a significant positive effect on the relationship between farmers' participation intention and participation behavior.


Subject(s)
Conservation of Natural Resources , Farmers , Humans , Farmers/psychology , Surveys and Questionnaires , Intention , Behavior Control , Agriculture
10.
Article in English | MEDLINE | ID: mdl-36673707

ABSTRACT

Soil-testing formula fertilization technology is a powerful tool for preserving arable land and ensuring food security. The purpose of this study was to investigate farmers' acceptance intentions and behavioral responses to soil-testing formula fertilization technology. Based on the theory of planned behavior, this paper adopts the partial least squares structural equation modeling (PLS-SEM) method, with 295 farmers in the high-standard farmland project area of Shaanxi Province as samples. The research results show that attitude (ATT), subjective norms (SN), and perceived behavioral control (PBC) all had a significant positive influence on farmers' behavioral intentions. The order of impact effects from large to small is ATT > SN > PBC. The ecological rationality of farmers, communication and demonstration between neighbors, and effective technical training, as well as consulting and guidance services, can better enhance farmers' intentions to apply soil-testing formula fertilization technology. This study could help to provide references for policymaking to improve the adoption of soil-testing formula fertilization technology.


Subject(s)
Intention , Soil , Surveys and Questionnaires , Attitude , Agriculture , Farmers , Fertilization
11.
Sci Rep ; 12(1): 16239, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171256

ABSTRACT

Shahe Reservoir of Northern Canal Basin was selected as the study area. Nineteen surface (0~20 cm) sediment samples and three sediment core samples were collected to analyze the spatial distribution characteristics of As, Cd, Cu, Mn, Pb and Zn in the sediments. The geo-accumulation index, potential ecological risk index and risk assessment code were used to evaluate heavy metal pollution, as well as its potential risk was analyzed according to the speciation of heavy metals. Results showed that the average enrichment factors of heavy metals compared to the background value in soil of Beijing were ranked at the order as the point source pollution area > the central area of the reservoir > the downstream area of the reservoir > the Nansha River > the upstream area of the reservoir > the Beisha River, namely, 2.57 times, 2.06 times, 1.97 times, 1.95 times, 1.87 times and 1.85 times, respectively. The sediment core samples in the central area of the reservoir and the inlet of the Beisha River showed a trend of increasing firstly and then decreasing with the change of depth. Pollution assessment results showed that sediment was moderately contaminated or moderately to strongly contaminated by As, but the other heavy metals were not polluted or lightly polluted. The potential ecological risk index of all sampling sites was less than 150, showing a low ecological risk. As Cr and Cu were mainly in the speciation of residues, with low bioavailability. Although the content of Mn and Zn were low, they showed high bioavailability. Based on correlation analysis and principal component analysis, it was speculated that the sources of various heavy metal pollution in the sediment were similar, which were possibly input from the external wastewater. The heavy metals in sediment were positively related to nutrients and organic matter, indicating that all of them were mostly from the same point polluted sources.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium/analysis , China , Environmental Monitoring/methods , Geologic Sediments/chemistry , Lead/analysis , Metals, Heavy/analysis , Risk Assessment , Soil/chemistry , Wastewater/analysis , Water Pollutants, Chemical/analysis
12.
Sci Rep ; 12(1): 6107, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414640

ABSTRACT

Seasonal changes characteristics in the respiration of four reconstructed soil masses in a barren gravel land were monitored. The results showed that (1) Respiration and heterotrophic respiration of the four reconstructed soils with added meteorite, shale, sand increased gradually with increasing soil temperatures, reaching its maximum in summer and decreasing to its minimum in winter. the average annual respiration of reconstructed soil with sand was 4.87 µmol·m-2·s-1, which was significantly higher than the other reconstructed soils (p < 0.05). (2) The maximum and minimum values of autotrophic respiration for the four reconstructed soils appeared in August 2018 and January 2018, respectively. the proportion of autotrophic respiration to total respiration was 12.5-38.0%, 9.5-42.0%, 7.7-41.2%, and 5.0-39.3% for the soils with reconstituted meteorite, shale, sand, and soft rock, respectively. (3) The relationship between respiration and the temperature of reconstructed soils can be represented by an exponential function. The 90% to 93% changes in reconstructed soils respiration were caused by soil temperature. The temperature sensitivity (Q10) of reconstituted soil with added sand was significantly higher than that of the other three reconstituted soils.


Subject(s)
Sand , Soil , Carbon Dioxide/analysis , China , Respiration , Seasons , Temperature
13.
Cancer Lett ; 536: 215662, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35331786

ABSTRACT

Metastasis is the leading cause of death for patients with colorectal cancer (CRC). The development of therapeutic regimens that selectively inhibit the biological processes involved in CRC cell dissemination is important. We used multiple Affymetrix DNA microarray hybridization datasets to identify genes related to metastasis and have significant prognostic value for patients with CRC. Quantitative real-time PCR, immunofluorescent and immunohistochemical staining were used to evaluate mRNA and protein expression. The function of aldehyde dehydrogenase 1A3 (ALDH1A3) in invasion was assessed by performing transwell assays and animal experiments. Real-time PCR, luciferase reporter assays, and western blotting were used to identify the genes regulated by ALDH1A3. Molecular docking, MTS assays, cellular thermal shift assays, isothermal titration calorimetry, microscale thermophoresis, and enzymatic activity assays were used to screen and verify the efficacy of the ALDH1A3-specific inhibitor YD1701 (dibenzo-30-crown10-ether). Finally, subcutaneous or orthotopic xenograft models were established to investigate the therapeutic potential of YD1701. Human ALDH1A3 was identified to correlate with a metastatic phenotype in CRC cells and a poor patient prognosis. Moreover, ALDH1A3 upregulated the expression of ZEB1 and SNAI2 by inhibiting miR-200 family members. The ALDH1A3-specific inhibitor YD1701 was screened, attenuated the invasion of CRC cells in vitro, and prolonged the survival of mice bearing subcutaneous or orthotopic xenografts. Our results show that ALDH1A3 promotes invasion and metastasis via the miR-200-ZEB1/SANI2 axis and is thus a plausible marker for predicting CRC progression. Inhibiting ALDH1A3 with the identified compound YD1701 might represent an effective therapeutic approach to prevent the metastasis of CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Aldehyde Dehydrogenase/metabolism , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice , MicroRNAs/genetics , Molecular Docking Simulation , Neoplasm Metastasis
14.
J Appl Genet ; 63(2): 265-279, 2022 May.
Article in English | MEDLINE | ID: mdl-35338429

ABSTRACT

Development of cultivars with multiple resistances has proven to be an effective way to prevent diseases in wheat breeding. The Guixie 3 variety (GX3) has shown excellent performance in resistance to stripe rust in field for many years. The purpose of this study was to detect quantitative trait loci (QTL) associated with resistance to stripe rust in the adult plant stage and determine closely linked molecular markers. A population of recombinant inbred lines (n = 228) was derived from a cross between the susceptible landrace Mian 96-5 (M96-5) and GX3 variety and evaluated in multiple field studies, and QTL analysis enabled to elucidate genetic architecture of wheat resistance to stripe rust. A total of 19 QTL for stripe rust resistance were mapped on 12 chromosomes using phenotypic data from multiple field tests over the course of 6 years. These chromosomes included 1B (2), 1D (2), 2A (2), 2B (2), 2D (1), 4B (2), 4D (1), 5A (3), 5B (1), 6A (1), 6B (1), and 7B (1). Two stable QTL on chromosomes 2AS (Qyr.gaas.2A) and 6AL (Qyr.gaas.6A) were detected in six and five different environments, respectively; in both QTL, positive allele was contributed by GX3 variety. Qyr.gaas.2A was found to be crucial for increasing adult plant resistance, which may explain the large phenotypic variation of 45.52%. Our results provide theoretical and molecular insight for wheat breeding and suggest the cloning of genes associated with the GX3 variety may be beneficial in future studies.


Subject(s)
Basidiomycota , Quantitative Trait Loci , Basidiomycota/genetics , Chromosome Mapping , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Triticum/genetics
15.
Cancer Lett ; 526: 103-111, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34808285

ABSTRACT

Invasive growth along white matter (WM) tracts is one of the most prominent clinicopathological features of glioma and is also an important reason for surgical treatment failure in glioma patients. A full understanding of relevant clinical features and mechanisms is of great significance for finding new therapeutic targets and developing new treatment regimens and strategies. Herein, we review the imaging and histological characteristics of glioma patients with WM tracts invasion and summarize the possible molecular mechanism. On this basis, we further discuss the correlation between glioma molecular typing, radiotherapy and tumor treating fields (TTFields) and the invasion of glioma along WM tracts.


Subject(s)
Glioma/complications , White Matter/pathology , Glioma/mortality , Glioma/pathology , Humans , Neurosurgeons , Survival Analysis
16.
Sci Rep ; 11(1): 21745, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741101

ABSTRACT

Using samples collected in Shahe Reservoir in the upper North Canal in China, this research analyzes the structure of a microorganism group in sediment and the absolute abundance of two typical pathogenic bacteria (Escherichia coli and Enterococcus), and their relationship with environmental factors including total nitrogen (TN) and total phosphorus (TP). The study of samples collected from the surface (0-20 cm) and sediment cores shows that the absolute abundance of E. coli in horizontal distribution in the sediment is highest in downstream of the reservoir and point source pollution area. In vertical distribution, the absolute gene expression level of the two pathogenic bacteria in the sediment tends to decrease with increasing depth, although its highest value at 10-30 cm depth. The relative abundance the two pathogenic bacteria is much greater in the sediment of Shahe Reservoir with the structure of horizontal groups including Clortridium sensu stricto, unclassified Anaeroineaceae, and Povalibacter, while Anaeroineaceae is much more abundant in the group structure of the vertical distribution. Pearson correlation analysis suggests positive correlation in horizontal distribution for E. coli and TN and TP (P < 0.05) and for Enterococcus and TP (P < 0.05). The results clearly show that the amount of pathogenic bacteria in the sediment in Shahe Reservoir is most likely due to water eutrophication.

17.
Sci Rep ; 11(1): 144, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420307

ABSTRACT

Seasonal changes in respiration and the components of four reconstructed soils (gravel + meteorite + lou; gravel + shale + lou; gravel + sand + lou; and gravel + soft rock + lou) in barren gravel land were monitored using the soil carbon flux measurement system. The results showed that (1) the monthly average respiration rate and the rates of the components in the four reconstructed soils were the highest in summer and lowest in winter. In winter, the monthly average respiration rates of the four reconstructed soils were not different (p > 0.05). In summer, the monthly average respiration rate of the sand or meteorite reconstructed soil was different from that of the other three (p < 0.05). (2) The heterotrophic and autotrophic respiration rates were different between the four reconstructed soils (p < 0.05). The contribution of heterotrophic respiration to total respiration in the four reconstructed soils was greater than that of autotrophic respiration throughout the year. In winter, autotrophic respiration accounts for the smallest proportion of total respiration. As the temperature rises, the proportion of autotrophic respiration to total respiration gradually increases and peaks in summer. In summer, the proportion of heterotrophic respiration in the total respiration is the smallest. With the decrease in temperature, the proportion of heterotrophic respiration in total respiration gradually increases and peaks in winter. (3) The maximum and minimum values of the monthly average respiration rate of the four reconstructed soils coincided with the months of maximum and minimum soil temperature. The soil volumetric water content changed with the amount of precipitation. The correlation between soil respiration and temperature was greater than that between soil respiration and volumetric water content. (4) The correlation in seasonal variation between respiration of the four remodelled soils and hydrothermal factors in the study area can be characterised by an exponential function and power-exponential function.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118786, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32854083

ABSTRACT

The precise and nondestructive detection of leaf chlorophyll content is one key to assessing the health status of crops. The objective of this study was to develop a precision method for determining the leaf chlorophyll content in rape. A genetic algorithm (GA) combined with the partial least squares (PLS) method was used to establish a chlorophyll content PLS regression estimation model based on screening the characteristic spectral regions of chlorophyll. The results show that the characteristic bands of chlorophyll in rape are 510-535, 675-695, 905-965, 1025-1225, 1165-1175, 1295-1385, 1495-1765, 1875-1895, 1970-2145, and 2179-2185 nm. Based on the characteristics of each input spectrum, the Rv2 and RPD values of the best model reached 0.97 and 5.41, respectively. This represented an increase of 0.20 and 3.42, respectively, over these values for the original full-spectrum model. The best model also achieved an RMSEP of 2.63 mg g-1, which was only 3.59% of the total sample average and was 3.78 mg g-1 less than that of the original full-spectrum model. Therefore, the best model provided good prediction accuracy for the chlorophyll content of rape. The model based on the Log (1/R) spectral transformation performed best in terms of prediction accuracy. The genetic algorithm combined with the partial least squares method (GA-PLS) can effectively screen the characteristic bands of rape chlorophyll, reduce the number of variables in the model, and produce high estimation accuracy.


Subject(s)
Chlorophyll , Plant Leaves , Algorithms , Least-Squares Analysis , Spectrum Analysis
19.
J Appl Genet ; 61(1): 37-50, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31912452

ABSTRACT

Wheat stripe rust can cause considerable yield losses, and genetic resistance is the most effective approach for controlling the disease. To identify the genomic regions responsible for Puccinia striiformis f. sp. tritici (Pst) resistance in a set of winter wheat strains mainly from southwestern China, and to identify DNA markers in these regions, we carried out a genome-wide association study (GWAS) of 120 China winter wheat accessions using single nucleotide polymorphism (SNP) markers from 90K wheat SNP arrays. In total, 16 SNP loci were significantly associated with wheat stripe rust in field and greenhouse trials. Of these, three distinctive SNPs on chromosomes 1B, 4A, and 6A were identified at a site in Mianyang in 2014, where the most prevalent wheat stripe rust races since 2009 have been V26 (G22-9, G22-14). This suggests that the three SNP loci were linked to the new quantitative trait loci (QTL)/genes resistant to the V26 races. Germplasm with immunity to Pst is a good source of stripe rust resistance for breeding, and after further validation, SNPs closely linked to resistance QTLs/genes could be converted into user-friendly markers and facilitate marker-assisted selection to improve wheat stripe rust resistance.


Subject(s)
Disease Resistance/genetics , Genome, Plant , Genome-Wide Association Study , Plant Diseases/genetics , Triticum/genetics , China , Genes, Plant , Genotype , Linkage Disequilibrium , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Triticum/microbiology
20.
Sci Rep ; 9(1): 2200, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778119

ABSTRACT

Soil structure represents a basis for soil water retention and fertiliser availability. Here, we performed a micromorphological analysis of thin soil sections to evaluate the effects of 10 years of organic planting (OPP), pollution-free planting (PFP), and conventional planting (CPP) on greenhouse soil structure in the North China Plain. We also analysed soil bulk density, soil organic matter (SOM), and wet aggregate stability. The CPP soil microstructure included weakly separated angular block or plate forms and weak development of soil pores (fissured or simply accumulated pores) with the highest bulk density (1.33 g cm-3) and lowest SOM (26.76 g kg-1). Unlike CPP, the OPP soil microstructure was characterised by highly separated granular and aggregated structures and an abundance of plant and animal remains. OPP was associated with the highest total porosity (55.4%), lowest bulk density (1.17 g cm-3), and highest SOM (54.81 g kg-1) in the soil surface layer. OPP also improved the ventilation pore content (proportion of pores >0.1 mm, 44.09%). OPP aggregates showed different hierarchies of crumb microstructure and higher mean weight diameter and geometric mean diameter values than did CPP. These results confirm the benefits of long-term OPP for soil structure and quality in the greenhouse.


Subject(s)
Environment , Greenhouse Effect , Plants , Soil , Agriculture , China , Environmental Monitoring , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...