Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37886583

ABSTRACT

We developed a computational framework that integrates Genome-Wide Association Studies (GWAS) and post-GWAS analyses, designed to facilitate drug repurposing for COVID-19 treatment. The comprehensive approach combines transcriptomic-wide associations, polygenic priority scoring, 3D genomics, viral-host protein-protein interactions, and small-molecule docking. Through GWAS, we identified nine druggable host genes associated with COVID-19 severity and SARS-CoV-2 infection, all of which show differential expression in COVID-19 patients. These genes include IFNAR1, IFNAR2, TYK2, IL10RB, CXCR6, CCR9, and OAS1. We performed an extensive molecular docking analysis of these targets using 553 small molecules derived from five therapeutically enriched categories, namely antibacterials, antivirals, antineoplastics, immunosuppressants, and anti-inflammatories. This analysis, which comprised over 20,000 individual docking analyses, enabled the identification of several promising drug candidates. All results are available via the DockCoV2 database (https://dockcov2.org/drugs/). The computational framework ultimately identified nine potential drug candidates: Peginterferon alfa-2b, Interferon alfa-2b, Interferon beta-1b, Ruxolitinib, Dactinomycin, Rolitetracycline, Irinotecan, Vinblastine, and Oritavancin. While its current focus is on COVID-19, our proposed computational framework can be applied more broadly to assist in drug repurposing efforts for a variety of diseases. Overall, this study underscores the potential of human genetic studies and the utility of a computational framework for drug repurposing in the context of COVID-19 treatment, providing a valuable resource for researchers in this field.

2.
Financ Innov ; 9(1): 90, 2023.
Article in English | MEDLINE | ID: mdl-37192904

ABSTRACT

This research explores upside and downside jumps in the dynamic processes of three rates: domestic interest rates, foreign interest rates, and exchange rates. To fill the gap between the asymmetric jump in the currency market and the current models, a correlated asymmetric jump model is proposed to capture the co-movement of the correlated jump risks for the three rates and identify the correlated jump risk premia. The likelihood ratio test results show that the new model performs best in 1-, 3-, 6-, and 12-month maturities. The in- and out-of-sample test results indicate that the new model can capture more risk factors with relatively small pricing errors. Finally, the risk factors captured by the new model can explain the exchange rate fluctuations for various economic events.

3.
Nucleic Acids Res ; 50(W1): W616-W622, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35536289

ABSTRACT

With the proliferation of genomic sequence data for biomedical research, the exploration of human genetic information by domain experts requires a comprehensive interrogation of large numbers of scientific publications in PubMed. However, a query in PubMed essentially provides search results sorted only by the date of publication. A search engine for retrieving and interpreting complex relations between biomedical concepts in scientific publications remains lacking. Here, we present pubmedKB, a web server designed to extract and visualize semantic relationships between four biomedical entity types: variants, genes, diseases, and chemicals. pubmedKB uses state-of-the-art natural language processing techniques to extract semantic relations from the large number of PubMed abstracts. Currently, over 2 million semantic relations between biomedical entity pairs are extracted from over 33 million PubMed abstracts in pubmedKB. pubmedKB has a user-friendly interface with an interactive semantic graph, enabling the user to easily query entities and explore entity relations. Supporting sentences with the highlighted snippets allow to easily navigate the publications. Combined with a new explorative approach to literature mining and an interactive interface for researchers, pubmedKB thus enables rapid, intelligent searching of the large biomedical literature to provide useful knowledge and insights. pubmedKB is available at https://www.pubmedkb.cc/.


Subject(s)
Computers , Search Engine , Humans , PubMed , Semantics , Data Mining/methods
4.
Commun Biol ; 4(1): 1194, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663927

ABSTRACT

The selection of peptides presented by MHC molecules is crucial for antigen discovery. Previously, several predictors have shown impressive performance on binding affinity. However, the decisive MHC residues and their relation to the selection of binding peptides are still unrevealed. Here, we connected HLA alleles with binding motifs via our deep learning-based framework, MHCfovea. MHCfovea expanded the knowledge of MHC-I-binding motifs from 150 to 13,008 alleles. After clustering N-terminal and C-terminal sub-motifs on both observed and unobserved alleles, MHCfovea calculated the hyper-motifs and the corresponding allele signatures on the important positions to disclose the relation between binding motifs and MHC-I sequences. MHCfovea delivered 32 pairs of hyper-motifs and allele signatures (HLA-A: 13, HLA-B: 12, and HLA-C: 7). The paired hyper-motifs and allele signatures disclosed the critical polymorphic residues that determine the binding preference, which are believed to be valuable for antigen discovery and vaccine design when allele specificity is concerned.


Subject(s)
Alleles , Deep Learning , Genes, MHC Class I/genetics , Peptides/chemistry , Humans , Protein Binding
5.
Nucleic Acids Res ; 49(D1): D1152-D1159, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33035337

ABSTRACT

The current state of the COVID-19 pandemic is a global health crisis. To fight the novel coronavirus, one of the best-known ways is to block enzymes essential for virus replication. Currently, we know that the SARS-CoV-2 virus encodes about 29 proteins such as spike protein, 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp), Papain-like protease (PLpro), and nucleocapsid (N) protein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) for viral entry and transmembrane serine protease family member II (TMPRSS2) for spike protein priming. Thus in order to speed up the discovery of potential drugs, we develop DockCoV2, a drug database for SARS-CoV-2. DockCoV2 focuses on predicting the binding affinity of FDA-approved and Taiwan National Health Insurance (NHI) drugs with the seven proteins mentioned above. This database contains a total of 3,109 drugs. DockCoV2 is easy to use and search against, is well cross-linked to external databases, and provides the state-of-the-art prediction results in one site. Users can download their drug-protein docking data of interest and examine additional drug-related information on DockCoV2. Furthermore, DockCoV2 provides experimental information to help users understand which drugs have already been reported to be effective against MERS or SARS-CoV. DockCoV2 is available at https://covirus.cc/drugs/.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Databases, Pharmaceutical/statistics & numerical data , SARS-CoV-2/drug effects , Antiviral Agents/metabolism , COVID-19/epidemiology , COVID-19/virology , Data Curation/methods , Data Mining/methods , Humans , Internet , Models, Molecular , Pandemics , Protein Binding/drug effects , Protein Domains , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication/drug effects
6.
Pediatr Crit Care Med ; 20(11): 1021-1026, 2019 11.
Article in English | MEDLINE | ID: mdl-31261230

ABSTRACT

OBJECTIVES: Critical illnesses caused by undiagnosed genetic conditions are challenging in PICUs. Whole-exome sequencing is a powerful diagnostic tool but usually costly and often fail to arrive at a final diagnosis in a short period. We assessed the feasibility of our whole-exome sequencing as a tool to improve the efficacy of rare diseases diagnosis for pediatric patients with severe illness. DESIGN: Observational analysis. METHOD: We employed a fast but standard whole-exome sequencing platform together with text mining-assisted variant prioritization in PICU setting over a 1-year period. SETTING: A tertiary referral Children's Hospital in Taiwan. PATIENTS: Critically ill PICU patients suspected of having a genetic disease and newborns who were suspected of having a serious genetic disease after newborn screening were enrolled. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Around 50,000 to 100,000 variants were obtained for each of the 40 patients in 5 days after blood sampling. Eleven patients were immediately found be affected by previously reported mutations after searching mutation databases. Another seven patients had a diagnosis among the top five in a list ranked by text mining. As a whole, 21 patients (52.5%) obtained a diagnosis in 6.2 ± 1.1 working days (range, 4.3-9 d). Most of the diagnoses were first recognized in Taiwan. Specific medications were recommended for 10 patients (10/21, 47.6%), transplantation was advised for five, and hospice care was suggested for two patients. Overall, clinical management was altered in time for 81.0% of patients who had a molecular diagnosis. CONCLUSIONS: The current whole-exome sequencing algorithm, balanced in cost and speed, uncovers genetic conditions in infants and children in PICU, which helps their managements in time and promotes better utilization of PICU resources.


Subject(s)
Exome Sequencing/methods , Genetic Diseases, Inborn/diagnosis , Child , Child, Preschool , Clinical Decision-Making , Critical Illness/therapy , Humans , Infant , Infant, Newborn , Intensive Care Units, Pediatric/statistics & numerical data , Exome Sequencing/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...