Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(45): e2303038, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37475524

ABSTRACT

Biomimetic flexible electronics for E-skin have received increasing attention, due to their ability to sense various movements. However, the development of smart skin-mimic material remains a challenge. Here, a simple and effective approach is reported to fabricate super-tough, stretchable, and self-healing conductive hydrogel consisting of polyvinyl alcohol (PVA), Ti3 C2 Tx MXene nanosheets, and polypyrrole (PPy) (PMP hydrogel). The MXene nanosheets and Fe3+ serve as multifunctional cross-linkers and effective stress transfer centers, to facilitate a considerable high conductivity, super toughness, and ultra-high stretchability (elongation up to 4300%) for the PMP hydrogel with. The hydrogels also exhibit rapid self-healing and repeatable self-adhesive capacity because of the presence of dynamic borate ester bond. The flexible capacitive strain sensor made by PMP hydrogel shows a relatively broad range of strain sensing (up to 400%), with a self-healing feature. The sensor can precisely monitor various human physiological signals, including joint movements, facial expressions, and pulse waves. The PMP hydrogel-based supercapacitor is demonstrated with a high capacitance retention of ≈92.83% and a coulombic efficiency of ≈100%.

2.
ACS Appl Mater Interfaces ; 14(45): 51361-51372, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36336918

ABSTRACT

Sustainable biomass materials are promising for low-cost wearable piezoresistive pressure sensors, but these devices are still produced with time-consuming manufacturing processes and normally display low sensitivity and poor mechanical stability at low-pressure regimes. Here, an aqueous MXene ink obtained by simply ball-milling is developed as a conductive modifier to fabricate the multiresponsive bidirectional bending actuator and compressible MXene-plant fiber sponge (MX-PFS) for durable and wearable pressure sensors. The MX-PFS is fabricated by physically foaming MXene ink and plant fibers. It possesses a lamellar porous structure composed of one-dimensional (1D) MXene-coated plant fibers and two-dimensional (2D) MXene nanosheets, which significantly improves the compression capacity and elasticity. Consequently, the encapsulated piezoresistive sensor (PRS) exhibits large compressible strain (60%), excellent mechanical durability (10 000 cycles), low detection limit (20 Pa), high sensitivity (435.06 kPa-1), and rapid response time (40 ms) for practical wearable applications.

3.
J Hazard Mater ; 432: 128740, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35338936

ABSTRACT

Rapid and efficient clean-up of viscous crude oil spills is still a global challenge due to its high viscous and poor flowability at room temperature. The hydrophobic/oleophilic absorbents with three-dimensional porous structure have been considered as a promising candidate to handle oil spills. However, they still have limited application in recovering the high viscous oil. Inspired by the viscosity of crude oil depended on the temperature, a solar-heated ink modified plant fiber sponge (PFS@GC) is fabricated via a simple and environmentally friendly physical foaming strategy combined with in-situ ink coating treatment. After wrapping by the polydimethylsiloxane (PDMS), the modified PFS@GC (PFS@GC@PDMS) exhibits excellent compressibility, high hydrophobic (141° in water contact angle), solar absorption (> 96.0%), and oil absorptive capacity (12.0-27.8 g/g). Benefiting from the favorable mechanical property and photothermal conversion capacity, PFS@GC@PDMS is demonstrated as a high-performance absorbent for crude oil clean-up and recovery. In addition, PFS@GC@PDMS can also be applied in a continuous absorption system for uninterrupted recovering of oil spills on the water surface. The proposed solar-heated absorbent design provides a new opportunity for exploring biomass in addressing large-scale oil spill disasters.


Subject(s)
Petroleum Pollution , Petroleum , Ink , Petroleum Pollution/analysis , Petroleum Pollution/prevention & control , Viscosity , Water/chemistry
4.
RSC Adv ; 11(54): 34416-34423, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-35497308

ABSTRACT

Aluminum phosphate (AP) shows great potential to replace formaldehyde-based adhesives in the wood industry, except for its weak hygroscopic resistance and low wet bonding strength. This study chose PVA as an AP modifier to prepare a PVA-AP organic-inorganic hybrid adhesive (PAP). The preparation, bonding mechanism and heat resistant property of PAP were studied by using X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The result showed that covalent bonds between PVA and AP were built. The mechanical properties of PAP improved remarkably; the dry and wet bonding strength are 2.28 and 0.79 MPa with 15.2% and 690% increment, respectively, compared to the control samples. The thermostabilities of PAP and plywood samples were improved. In conclusion, PVA could effectively improve the hygroscopic resistance and low wet bonding strength of AP adhesives.

5.
ACS Appl Mater Interfaces ; 12(45): 50397-50405, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33108720

ABSTRACT

Solar steam generation is receiving considerable interest because of its potential application in wastewater treatment and desalination. Many devices with various photothermal materials and structures have been demonstrated to be solar steam evaporators by improving their light absorption, heat loss, water transportation, and vapor escape. However, developing a biomass-based evaporator with heat localization and rapid water transportation is highly desired yet still challenging. Here, corncobs, a kind of agricultural waste with vascular bundle and "vesiculose" structures, are used to fabricate solar steam-generation devices. After high-temperature treatment, the carbonized corncobs maintain the highly anisotropic porous framework and favorable hydrophilicity and thereby have excellent thermal management and water transportation. With efficient solar absorption, heat localization, and rapid water transportation, the lightweight carbonized corncobs can float on water and generate water vapor with a high steam generation efficiency of 86.7% under 1 sun.

6.
ACS Appl Mater Interfaces ; 12(17): 19511-19518, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32271530

ABSTRACT

Solar steam generation as a promising solar energy conversion technology has attracted considerable interest in achieving seawater desalination and water purification. Although wood with fast water transportation and excellent heat localization has drawn particular interest in regard to its application for solar steam generation, challenges still remain in terms of its complicated processing techniques and relatively low efficiency. Here, we propose a facile, cost-efficient, and scalable brushing method to prepare an aluminophosphate-treated wood (Wood@AlP) solar steam generation device. The aluminophosphate compound deposited on the wood surface can not only be considered as the Lewis acid catalyst capable of accelerating the formation of the carbon layer but also provide an aluminophosphate layer with a hierarchical porous structure, which is beneficial for broad solar absorption and vapor escape. On the other hand, benefiting from the natural hydrophilicity, low thermal conductivity, and excellent water transportation of wood, the obtained Wood@AlP device can float on seawater and exhibit a high solar thermal efficiency of 90.8% with a net evaporation rate of 1.423 kg m-2 h-1 under 1 sun illumination.

7.
ACS Omega ; 5(15): 8784-8793, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32337440

ABSTRACT

Fungi play a considerable role in the deterioration of lignocellulose materials, as their activities either affect the esthetic properties or lead to decay of the host materials. The new generation of organic-inorganic preservatives, which are copper-based but chrome- and arsenic-free, is a subject of many research works. Mildew fungus prevention, treatment of affected materials, and their successive conservation are essential to the woodworkers. To prevent degradation and prolong the service life of wood, a sol-gel organic-inorganic procedure was employed in this study. Aluminum sulfate (Al2(SO4)3), copper sulfate (CuSO4·5H2O), and boric acid (H3BO3) were introduced into phosphoric acid (H3PO4) and water glass as an antimildew agent, with different treatment concentrations (0.7, 1.4, and 2%). Wood was inoculated with Aspergillus niger and Trichoderma viride after new treatment based on the inorganic preservative. The changes in wood surface, structural chemistry, and the crystalline structure of the treated wood were examined by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD), respectively. The growth of the two mildew fungi showed distribution, and evidence of mildew covering only the untreated wood surfaces and an increase in the crystallinity of wood was observed after the process. The study suggests that the two mildew fungi investigated herein could be prevented by sol-gel coating with a Si-Al-Cu-P antimildew agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...